48 resultados para sinusoidal signals
Resumo:
A new approach for studying photorefractive gratings in two-wave mixing experiments by a phase modulation technique is presented. The introduction of a large-amplitude, high-frequency sinusoidal phase modulation in one of the input beams blurs the interference pattern and provides powerful harmonic signals for accurate measurements of the grating diffraction efficiency eta and the output phase shift rho between the transmitted and diffracted waves. The blurring of the light fringes can be used to suppress the higher spatial harmonics of the grating, allowing a space-charge field with sinusoidal profile to be recorded. Although the presence of such a strong phase modulation affects the beam coupling in a rather complicated way, it is shown that for the special case of equal intensity input beams, the effect of the phase modulation on eta and rho is reduced to a weakening of the coupling strength. The potentialities of the technique are illustrated in a study of refractive-index waves excited by running interference patterns in a Bi12TiO20 crystal. Expressions for the diffraction efficiency and the output phase shift are derived and used to match numerically calculated curves to the experimental data. The theoretical model is supported by the very good data fitting and allows the computation of important material parameters.
Resumo:
We illustrate the sensitivities of LEP experiments to leptonic signals associated to models where supersymmetry (SUSY) is realized with spontaneous breaking of R-parity. We focus on missing transverse momentum plus acoplanar muon events (p Τ + μ + μ -) arising from lightest neutralino single production xv as well as pair production xx, followed by x decays, where x denotes the lightest neutralino. We show that the integrated luminosity achieved at LEP already starts probing the basic parameters of the theory. We discuss the significance of these constraints for the simplest spontaneous R-parity breaking models and their relevance for future searches of SUSY particles.
Resumo:
We discuss signals for CP violation in μ + μ - → Τ̃ i - Τ̃ j +, where i, j = 1, 2 label the two scalar Τ mass eigenstates. We assume that these reactions can proceed through the production and decay of the heavy neutral Higgs bosons present in supersymmetric models. CP violation in the Higgs sector can be probed through a rate asymmetry even with unpolarized beams, while the CP-odd phase associated with the Τ̃ mass matrix can be probed only if the polarization of at least one beam can be varied. These asymmetries might be O (1).
Resumo:
We study chargino pair production at LEP II in supersymmetric models with spontaneously broken R-parity. We perform signal and background analyses, showing that a large region of the parameter space of these models can be probed through chargino searches at LEP II. In particular, we determine the attainable limits on the chargino mass as a function of the magnitude of the effective bilinear R-parity violation parameter ∈, demonstrating that LEP II is able to unravel the existence of charginos with masses almost up to their kinematical limit even in the case of R-parity violation. This requires the study of several final state topologies since the usual MSSM chargino signature is recovered as ∈ → 0. Moreover, for sufficiently large ∈ values, for which the chargino decay mode χ ± → τ ± J dominates, we find through a dedicated Monte Carlo analysis that the χ ± mass bounds are again very close to the kinematic limit. Our results establish the robustness of the chargino mass limit, in the sense that it is basically model-independent. They also show that LEP II can establish the existence of spontaneous R-parity violation in a large region of parameter space should charginos be produced. © 1999 Elsevier Science B.V.
Resumo:
Traditional mathematical tools, like Fourier Analysis, have proven to be efficient when analyzing steady-state distortions; however, the growing utilization of electronically controlled loads and the generation of a new dynamics in industrial environments signals have suggested the need of a powerful tool to perform the analysis of non-stationary distortions, overcoming limitations of frequency techniques. Wavelet Theory provides a new approach to harmonic analysis, focusing the decomposition of a signal into non-sinusoidal components, which are translated and scaled in time, generating a time-frequency basis. The correct choice of the waveshape to be used in decomposition is very important and discussed in this work. A brief theoretical introduction on Wavelet Transform is presented and some cases (practical and simulated) are discussed. Distortions commonly found in industrial environments, such as the current waveform of a Switched-Mode Power Supply and the input phase voltage waveform of motor fed by inverter are analyzed using Wavelet Theory. Applications such as extracting the fundamental frequency of a non-sinusoidal current signal, or using the ability of compact representation to detect non-repetitive disturbances are presented.
Resumo:
This work uses a monitoring system based on a PC platform, where the acoustic emission and electric power signals generated during the grinding process are used to investigate superficial burning occurrence in a surface grinding operation using two types of steel, three grinding conditions and an Al203 vitrified grinding wheel. Acoustic emission signals on the workpiece and grinding power were measured during a surface plunge operation until the grinding burn happened. From the results the standard deviation of the acoustic emission signal and the maximum electric power were calculated for each grinding pass. The proposed DPO parameter is the product between the power level and acoustic emission standard deviation. The results show that both signals can be used for burning detection, and the parameter DPO is the best indicator for the burning studied in this work. This can be explained by the high dispersion of the acoustic emission RMS level associated to the high power consumption when the grinding wheel lose its sharpness.
Resumo:
We study signals for the production of superparticles at the Fermilab Tevatron in supergravity scenarios based on the grand unified group SO(10). The breaking of this group introduces extra contributions to the masses of all scalars, described by a single new parameter. We find that varying this parameter can considerably change the size of various expected signals studied in the literature, with different numbers of jets and/or charged leptons in the final state. The ratios of these signals can thus serve as a diagnostic to detect or constrain deviations from the much-studied scenario where all scalar masses are universal at the GUT scale. Moreover, under favorable circumstances some of these signals, and/or new signals involving hard b jets, should be observable at the next run of the Fermilab Tevatron collider even if the average scalar mass lies well above the gluino mass. ©2000 The American Physical Society.
Resumo:
We analyze the potentiality of hadron colliders to search for large extra dimensions via the production of photon pairs. The virtual exchange of Kaluza-Klein gravitons can significantly enhance this process provided the quantum gravity scale (MS) is in the TeV range. We studied in detail the subprocesses qq̄→γγ and gg → γγ taking into account the complete standard model and graviton contributions as well as the unitarity constraints. We show that the Fermilab Tevatron run II will be able to probe MS up to 1.5-1.9 TeV at 2σ level, while the CERN LHC can extend this search to 5.3-6.7 TeV, depending on the number of extra dimensions. ©2000 The American Physical Society.
Resumo:
This paper describes a speech enhancement system (SES) based on a TMS320C31 digital signal processor (DSP) for real-time application. The SES algorithm is based on a modified spectral subtraction method and a new speech activity detector (SAD) is used. The system presents a medium computational load and a sampling rate up to 18 kHz can be used. The goal is load and a sampling rate up to 18 kHz can be used. The goal is to use it to reduce noise in an analog telephone line.
Resumo:
We analyze the potential of the next generation of e+e- linear colliders to search for large extra dimensions via the production of fermion pairs in association with Kaluza-Klein gravitons (G), i.e., e+e- →ff̃G. This process leads to a final state exhibiting a significant amount of missing energy in addition to acoplanar lepton or jet pairs. We study in detail this reaction using the full tree level contributions due to the graviton emission and the standard model backgrounds. After choosing the cuts to enhance the signal, we show that a linear collider with a center-of-mass energy of 500 GeV will be able to probe quantum gravity scales from 0.96 (0.86) up to 4.1 (3.3) TeV at a 2 (5)σ level, depending on the number of extra dimensions. ©2001 The American Physical Society.
Resumo:
A low-voltage, low-power OTA-C sinusoidal oscillator based on a triode-MOSFET transconductor is here discussed. The classical quadrature model is employed and the transconductor inherent nonlinear characteristic with input voltage is used as the amplitude-stabilization element. An external bias VTUNE linearly adjusts the oscillation frequency. According to a standard 0.8μm CMOS n-well process, a prototype was integrated, with an effective area of 0.28mm2. Experimental data validate the theoretical analysis. For a single 1.8V-supply and 100mV≤VTUNE≤250mV, the oscillation frequency fo ranges from 0.50MHz to 1.125MHz, with a nearly constant gain KVCO=4.16KHz/mV. Maximum output amplitude is 374mVpp @1.12MHz. THD is -41dB @321mVpp. Maximum average consumption is 355μW.
Resumo:
A quasi-sinusoidal linearly tunable OTA-C VCO built with triode-region transconductors is presented. Oscillation upon power-on is ensured by RHP poles associated with gate-drain capacitances of OTA input devices. Since the OTA nonlinearity stabilizes the amplitude, the oscillation frequency f0 is first-order independent of VDD, making the VCO adequate to mixed-mode designs. A range of simulations attests the theoretical analysis. As part of a DPLL, the VCO was prototyped on a 0.8μm CMOS process, occupying an area of 0.15mm2. Nominal f0 is 1MHz, with K VCo=8.4KHz/mV. Measured sensitivity to VDD is below 2.17, while phase noise is -86dBc at 100-KHz offset. The feasibility of the VCO for higher frequencies is verified by a redesign based on a 0.35μm CMOS process and VDD=3.3V, with a linear frequency-span of l3.2MHz - 61.5MHz.
Resumo:
This letter describes a novel algorithm that is based on autoregressive decomposition and pole tracking used to recognize two patterns of speech data: normal voice and disphonic voice caused by nodules. The presented method relates the poles and the peaks of the signal spectrum which represent the periodic components of the voice. The results show that the perturbation contained in the signal is clearly depicted by pole's positions. Their variability is related to jitter and shimmer. The pole dispersion for pathological voices is about 20% higher than for normal voices, therefore, the proposed approach is a more trustworthy measure than the classical ones. © 2007.