88 resultados para ponderomotive force


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of a sudden increase and decrease of the interatomic interaction and harmonic-oscillator trapping potential on vortices in a quasi two-dimensional rotating Bose-Einstein condensate are investigated using the mean-field Gross-Pitaevskii equation. We also study the decay of vortices when the rotation of the condensate is suddenly stopped. Upon a free expansion of a rotating BEC with vortices the radius of the vortex core increases more rapidly than the radius of the condensate. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quark-model descriptions of the nucleon-nucleon interaction contain two main ingredients, a quark-exchange mechanism for the short-range repulsion and meson exchanges for the medium- and long-range parts of the interaction. We point out the special role played by higher partial waves, and in particular the (1)F(3), as a very sensitive probe for the meson-exchange pan employed in these interaction models. In particular, we show that the presently available models fail to provide a reasonable description of higher partial waves and indicate the reasons for this shortcoming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamical properties of a classical particle bouncing between two rigid walls, in the presence of a drag force, are studied for the case where one wall is fixed and the other one moves periodically in time. The system is described in terms of a two-dimensional nonlinear map obtained by solution of the relevant differential equations. It is shown that the structure of the KAM curves and the chaotic sea is destroyed as the drag force is introduced. At high energy, the velocity of the particle decreases linearly with increasing iteration number, but with a small superimposed sinusoidal modulation. If the motion passes near enough to a fixed point, the particle approaches it exponentially as the iteration number evolves, with a speed of approach that depends on the strength of the drag force. For a simplified version of the model it is shown that, at low energies corresponding to the region of the chaotic sea in the non-dissipative model, the particle wanders in a chaotic transient that depends on the strength of the drag coefficient. However, the KAM islands survive in the presence of dissipation. It is confirmed that the fixed points and periodic orbits go over smoothly into the orbits of the well-known (non-dissipative) Fermi-Ulam model as the drag force goes to zero.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the mid 1980s the Atomic Force Microscope is one the most powerful tools to perform surface investigation, and since 1995 Non-Contact AFM achieved true atomic resolution. The Frequency-Modulated Atomic Force Microscope (FM-AFM) operates in the dynamic mode, which means that the control system of the FM-AFM must force the micro-cantilever to oscillate with constant amplitude and frequency. However, tip-sample interaction forces cause modulations in the microcantilever motion. A Phase-Locked loop (PLL) is used to demodulate the tip-sample interaction forces from the microcantilever motion. The demodulated signal is used as the feedback signal to the control system, and to generate both topographic and dissipation images. As a consequence, a proper design of the PLL is vital to the FM-AFM performance. In this work, using bifurcation analysis, the lock-in range of the PLL is determined as a function of the frequency shift (Q) of the microcantilever and of the other design parameters, providing a technique to properly design the PLL in the FM-AFM system. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some dynamical properties of a particle suffering the action of a generic drag force are obtained for a dissipative Fermi Acceleration model. The dissipation is introduced via a viscous drag force, like a gas, and is assumed to be proportional to a power of the velocity: F alpha -nu(gamma). The dynamics is described by a two-dimensional nonlinear area-contracting mapping obtained via the solution of Newton's second law of motion. We prove analytically that the decay of high energy is given by a continued fraction which recovers the following expressions: (i) linear for gamma = 1; (ii) exponential for gamma = 2; and (iii) second-degree polynomial type for gamma = 1.5. Our results are discussed for both the complete version and the simplified version. The procedure used in the present paper can be extended to many different kinds of system, including a class of billiards problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glassy carbon electrodes (GCE) were modified with poly(glutamic acid) acid films prepared using three different procedures: glutamic acid monomer electropolymerization (MONO), evaporation of poly(glutamic acid) (PAG) and evaporation of a mixture of poly(glutamic acid)/glutaraldehyde (PAG/GLU). All three films showed good adherence to the electrode surface. The performance of the modified GCE was investigated by cyclic voltammetry and differential pulse voltammetry, and the films were characterized by atomic force microscopy (AFM) and electrochemical impedance spectroscopy (EIS). The three poly(glutamic acid) modified GCEs were tested using the electrochemical oxidation of ascorbic acid and a decrease of the overpotential and the improvement of the oxidation peak current was observed. The PAG modified electrode surfaces gave the best results. AFM morphological images showed a polymeric network film formed by well-defined nanofibres that may undergo extensive swelling in solution, allowing an easier electron transfer and higher oxidation peaks. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new strategy for the label-free electrochemical detection of DNA hybridization for detecting hepatitis C virus based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes. Synthetic single-stranded 18-mer HCV genotype-1-specific probe DNA has been immobilized at a 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole film established by electropolymerization at the previously formed polypyrrole layer. HCV DNA sequences (244-mer) resulting from the reverse transcriptase-linked polymerase chain reaction amplification of the original viral RNA were monitored by affecting the ion-exchange properties of the polypyrrole film. The performance of this miniaturized DNA sensor system was studied in respect to selectivity, sensitivity, and reproducibility. The limit of detection was determined at 1.82 x 10(-21) mol L-1. Control experiments were performed with cDNA from HCV genotypes 2a/c, 2b, and 3 and did not show any unspecific binding. Additionally, the influence of the spacer length of 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole on the behavior of the DNA sensor was investigated. This biosensing scheme was finally extended to the electrochemical detection of DNA at submicrometer-sized DNA biosensors integrated into bifunctional atomic force scanning electrochemical microscopy probes. The 18-mer DNA target was again monitored by following the ion-exchange properties of the polypyrrole film. Control experiments were performed with 12-base pair mismatched sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of afterload on the rate of force generation by the myocardium was investigated using two types of preparations: the in situ dog heart (dP/dt) and isolated papillary muscle of rats (dT/dt). Thirteen anesthetized, mechanically ventilated and thoracotomized dogs were submitted to pharmacological autonomic blockade (3.0 mg/kg oxprenolol plus 0.5 mg/kg atropine). A reservoir connected to the left atrium permitted the control of left ventricular end-diastolic pressure (LVEDP). A mechanical constriction of the descending thoracic aorta allowed to increase the systolic pressure in two steps of 20 mmHg (conditions H1 and H2) above control values (condition C). After arterial pressure elevations (systolic pressure C: 119 ± 8.1; H1: 142 ± 7.9; H2 166 ± 7.7 mmHg; P<0.01), there were no significant differences in heart rate (C: 125 ± 13.9; H1: 125 ± 13.5; H2: 123 ± 14.1 bpm; P>0.05) or LVEDP (C: 6.2 ± 2.48; H1: 6.3 ± 2.43; H2: 6.1 ± 2.51 mmHg; P>0.05). The values of dP/dt did not change after each elevation of arterial pressure (C: 3,068 ± 1,057; H1: 3,112 ± 996; H2: 3,086 ± 980 mmHg/s; P>0.05). In isolated rat papillary muscle, an afterload corresponding to 50% and 75% of the maximal developed tension did not alter the values of the maximum rate of tension development (100%: 78 ± 13; 75%: 80 ± 13; 50%: 79 ± 11 g mm-2 s-1, P>0.05). The results show that the rise in afterload per se does not cause changes in dP/dt or dT/dt