117 resultados para periodic orbit
Resumo:
Pós-graduação em Matematica Aplicada e Computacional - FCT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
During the last 30 years the Atomic Force Microscopy became the most powerful tool for surface probing in atomic scale. The Tapping-Mode Atomic Force Microscope is used to generate high quality accurate images of the samples surface. However, in this mode of operation the microcantilever frequently presents chaotic motion due to the nonlinear characteristics of the tip-sample forces interactions, degrading the image quality. This kind of irregular motion must be avoided by the control system. In this work, the tip-sample interaction is modelled considering the Lennard-Jones potentials and the two-term Galerkin aproximation. Additionally, the State Dependent Ricatti Equation and Time-Delayed Feedback Control techniques are used in order to force the Tapping-Mode Atomic Force Microscope system motion to a periodic orbit, preventing the microcantilever chaotic motion
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Saturn's F ring, which lies 3,400 km beyond the edge of the main ring system, was discovered by the Pioneer 11 spacecraft(1) in 1979. It is a narrow, eccentric ring which shows an unusual 'braided' appearance in several Voyager 1 images' obtained in 1980, although it appears more regular in images from Voyager 2 obtained nine months later(3). The discovery of the moons Pandora and Prometheus orbiting on either side of the ring provided a partial explanation for some of the observed features(4). Recent observations of Prometheus(5,6) by the Hubble Space Telescope show, surprisingly, that it is lagging behind its expected position by similar to 20 degrees. By modelling the dynamical evolution of the entire Prometheus-F ring-Pandora system, we show here that Prometheus probably encountered the core of the F ring in 1994 and that it may still be entering parts of the ring once per orbit. Collisions with objects in the F ring provide a plausible explanation for the observed lag and imply that the mass of the F ring is probably less than 25% that of Prometheus.
Resumo:
We report a diversity of stable gap solitons in a spin-orbit-coupled Bose-Einstein condensate subject to a spatially periodic Zeeman field. It is shown that the solitons can be classified by the main physical symmetries they obey, i.e., symmetries with respect to parity (P), time (T), and internal degree of freedom, i.e., spin (C), inversions. The conventional gap and gap-stripe solitons are obtained in lattices with different parameters. It is shown that solitons of the same type but obeying different symmetries can exist in the same lattice at different spatial locations. PT and CPT symmetric solitons have antiferromagnetic structure and are characterized, respectively, by nonzero and zero total magnetizations. © 2013 American Physical Society.