31 resultados para path integral quantization
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We prove the equivalence of many-gluon Green's functions in the Duffin-Kemmer-Petieu and Klein-Gordon-Fock statistical quantum field theories. The proof is based on the functional integral formulation for the statistical generating functional in a finite-temperature quantum field theory. As an illustration, we calculate one-loop polarization operators in both theories and show that their expressions indeed coincide.
Resumo:
In this work the independent particle model formulation is studied as a mean-field approximation of gauge theories using the path integral approach in the framework of quantum electrodynamics in 1 + 1 dimensions. It is shown how a mean-field approximation scheme can be applied to fit an effective potential to an independent particle model, building a straightforward relation between the model and the associated gauge field theory. An example is made considering the problem of massive Dirac fermions on a line, the so called massive Schwinger model. An interesting result is found, indicating a behaviour of screening of the charges in the relativistic limit of strong coupling. A forthcoming application of the method developed to confining potentials in independent quark models for QCD is in view and is briefly discussed.
Resumo:
The exact propagator beyond and at caustics for a pair of coupled and driven oscillators with different frequencies and masses is calculated using the path-integral approach. The exact wavefunctions and energies are also presented. Finally the propagator is re-calculated through an alternative method, using the δfunction. © 1992 IOP Publishing Ltd.
Resumo:
We consider an extension of the axial model where local gauge symmetries are taken into account. The result is a mixing of the axial and Schwinger models. The anomaly of the axial current is calculated by means of the Fujikawa path integral technique and the model is also solved. Besides the well-known features of the particular models (axial and Schwinger) an effective interaction of scalar and gauge fields via a topological current is obtained. This term is responsible for the appearance of massive poles in the propagators that are different from those of both models.
Resumo:
In this work we solve exactly a class of three-body propagators for the most general quadratic interactions in the coordinates, for arbitrary masses and couplings. This is done both for the constant as the time-dependent couplings and masses, by using the Feynman path integral formalism. Finally, the energy spectrum and the eigenfunctions are recovered from the propagators. © 2005 Elsevier Inc. All rights reserved.
Resumo:
In this work we study two different spin-boson models. Such models are generalizations of the Dicke model, it means they describe systems of N identical two-level atoms coupled to a single-mode quantized bosonic field, assuming the rotating wave approximation. In the first model, we consider the wavelength of the bosonic field to be of the order of the linear dimension of the material composed of the atoms, therefore we consider the spatial sinusoidal form of the bosonic field. The second model is the Thompson model, where we consider the presence of phonons in the material composed of the atoms. We study finite temperature properties of the models using the path integral approach and functional methods. In the thermodynamic limit, N→∞, the systems exhibit phase transitions from normal to superradiant phase at some critical values of temperature and coupling constant. We find the asymptotic behavior of the partition functions and the collective spectrums of the systems in the normal and the superradiant phases. We observe that the collective spectrums have zero energy values in the superradiant phases, corresponding to the Goldstone mode associated to the continuous symmetry breaking of the models. Our analysis and results are valid in the limit of zero temperature β→∞, where the models exhibit quantum phase transitions. © 2013 Elsevier B.V. All rights reserved.
Resumo:
We consider the non-Markovian Langevin evolution of a dissipative dynamical system in quantum mechanics in the path integral formalism. After discussing the role of the frequency cutoff for the interaction of the system with the heat bath and the kernel and noise correlator that follow from the most common choices, we derive an analytic expansion for the exact non-Markovian dissipation kernel and the corresponding colored noise in the general case that is consistent with the fluctuation-dissipation theorem and incorporates systematically non-local corrections. We illustrate the modifications to results obtained using the traditional (Markovian) Langevin approach in the case of the exponential kernel and analyze the case of the non-Markovian Brownian motion. We present detailed results for the free and the quadratic cases, which can be compared to exact solutions to test the convergence of the method, and discuss potentials of a general nonlinear form. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We show that an anisotropic nonquadratic potential, for which a path integral treatment has been recently discussed in the literature, possesses the SO(2, 1) ⊗SO(2, 1) ⊗SO(2, 1) dynamical symmetry, and construct its Green function algebraically. A particular case which generates new eigenvalues and eigenfunctions is also discussed. © 1990.
Resumo:
Pós-graduação em Física - IFT
Resumo:
In this work we show how to define the action of a scalar field such that the Robin boundary condition is implemented dynamically, i.e. as a consequence of the stationary action principle. We discuss the quantization of that system via functional integration. Using this formalism, we derive an expression for the Casimir energy of a massless scalar field under Robin boundary conditions on a pair of parallel plates, characterized by constants c(1) and c(2). Some special cases are discussed; in particular, we show that for some values of cl and c(2) the Casimir energy as a function of the distance between the plates presents a minimum. We also discuss the renormalization at one-loop order of the two-point Green function in the philambda(4) theory subject to the Robin boundary condition on a plate.
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Pós-graduação em Psicologia - FCLAS