144 resultados para nonlinear chaotic analysis
Resumo:
A neural model for solving nonlinear optimization problems is presented in this paper. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The network is shown to be completely stable and globally convergent to the solutions of nonlinear optimization problems. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are presented to validate the developed methodology.
Design and analysis of an efficient neural network model for solving nonlinear optimization problems
Resumo:
This paper presents an efficient approach based on a recurrent neural network for solving constrained nonlinear optimization. More specifically, a modified Hopfield network is developed, and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it handles optimization and constraint terms in different stages with no interference from each other. Moreover, the proposed approach does not require specification for penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyse its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network.
Resumo:
Background: The autonomic dysfunction stands out among the complications associated to diabetes mellitus (DM) and may be evaluated through the heart rate variability (HRV), a noninvasive tool to investigate the autonomic nervous system that provides information of health impairments and may be analyzed by using linear and nonlinear methods. Several studies have shown that HRV measured in a linear form is altered in DM. Nevertheless, a few studies investigate the nonlinear behavior of HRV. Therefore, this study aims at gathering information regarding the autonomic changes in subjects with DM identified by nonlinear analysis of HRV.Methods: For that, searches were performed on Medline, SciELO, Lilacs and Cochrane databases using the crossing between the key-words: diabetic autonomic neuropathy, autonomic nervous system, diabetes mellitus and heart rate variability. As inclusion criteria, articles published on a period from 2000 to 2010 with DM type land type II population which assessed the autonomic nervous system by nonlinear indices HRV were considered.Results: The electronic search resulted in a total of 1873 references with the exclusion of 1623 titles and abstracts and from the 250 abstracts remaining, 8 studies were selected to the final analysis that completed the inclusion criteria.Conclusions: In general, the analysis showed that the nonlinear techniques of HRV allowed detecting autonomic changes in DM. The methods of nonlinear analysis are indicated as a possible tool to be used for early diagnosis and prognosis of autonomic dysfunction in DM.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We study wave propagation in local nonlinear electrodynamical models. Particular attention is paid to the derivation and the analysis of the Fresnel equation for the wave covectors. For the class of local nonlinear Lagrangian nondispersive models, we demonstrate how the originally quartic Fresnel equation factorizes, yielding the generic birefringence effect. We show that the closure of the effective constitutive (or jump) tensor is necessary and sufficient for the absence of birefringence, i.e., for the existence of a unique light cone structure. As another application of the Fresnel approach, we analyze the light propagation in a moving isotropic nonlinear medium. The corresponding effective constitutive tensor contains nontrivial skewon and axion pieces. For nonmagnetic matter, we find that birefringence is induced by the nonlinearity, and derive the corresponding optical metrics.
Resumo:
Considering the static solutions of the D-dimensional nonlinear Schrodinger equation with trap and attractive two-body interactions, the existence of stable solutions is limited to a maximum critical number of particles, when D greater than or equal to 2. In case D = 2, we compare the variational approach with the exact numerical calculations. We show that, the addition of a positive three-body interaction allows stable solutions beyond the critical number. In this case, we also introduce a dynamical analysis of the conditions for the collapse. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The objective of this work was to evaluate the Nelore beef cattle, growth curve parameters using the Von Bertalanffy function in a nested Bayesian procedure that allowed estimation of the joint posterior distribution of growth curve parameters, their (co)variance components, and the environmental and additive genetic components affecting them. A hierarchical model was applied; each individual had a growth trajectory described by the nonlinear function, and each parameter of this function was considered to be affected by genetic and environmental effects that were described by an animal model. Random samples of the posterior distributions were drawn using Gibbs sampling and Metropolis-Hastings algorithms. The data set consisted of a total of 145,961 BW recorded from 15,386 animals. Even though the curve parameters were estimated for animals with few records, given that the information from related animals and the structure of systematic effects were considered in the curve fitting, all mature BW predicted were suitable. A large additive genetic variance for mature BW was observed. The parameter a of growth curves, which represents asymptotic adult BW, could be used as a selection criterion to control increases in adult BW when selecting for growth rate. The effect of maternal environment on growth was carried through to maturity and should be considered when evaluating adult BW. Other growth curve parameters showed small additive genetic and maternal effects. Mature BW and parameter k, related to the slope of the curve, presented a large, positive genetic correlation. The results indicated that selection for growth rate would increase adult BW without substantially changing the shape of the growth curve. Selection to change the slope of the growth curve without modifying adult BW would be inefficient because their genetic correlation is large. However, adult BW could be considered in a selection index with its corresponding economic weight to improve the overall efficiency of beef cattle production.
Resumo:
The chaotic oscillation in an attractive Bose-Einstein condensate (BEC) under an impulsive force was discussed using mean-field Gross-Pitaevskii (GP) equation. It was found that sustained chaotic oscillation resulted in a BEC under the action of an impulsive force generated by suddenly changing the interatomic scattering length or the harmonic oscillator trapping potential. The analysis suggested that the final state interatomic attraction played an important role in the generation of the chaotic dynamics.
Resumo:
This work aims at a better comprehension of the features of the solution surface of a dynamical system presenting a numerical procedure based on transient trajectories. For a given set of initial conditions an analysis is made, similar to that of a return map, looking for the new configuration of this set in the first Poincaré sections. The mentioned set of I.C. will result in a curve that can be fitted by a polynomial, i.e. an analytical expression that will be called initial function in the undamped case and transient function in the damped situation. Thus, it is possible to identify using analytical methods the main stable regions of the phase portrait without a long computational time, making easier a global comprehension of the nonlinear dynamics and the corresponding stability analysis of its solutions. This strategy allows foreseeing the dynamic behavior of the system close to the region of fundamental resonance, providing a better visualization of the structure of its phase portrait. The application chosen to present this methodology is a mechanical pendulum driven through a crankshaft that moves horizontally its suspension point.
Resumo:
In this work, the linear and nonlinear feedback control techniques for chaotic systems were been considered. The optimal nonlinear control design problem has been resolved by using Dynamic Programming that reduced this problem to a solution of the Hamilton-Jacobi-Bellman equation. In present work the linear feedback control problem has been reformulated under optimal control theory viewpoint. The formulated Theorem expresses explicitly the form of minimized functional and gives the sufficient conditions that allow using the linear feedback control for nonlinear system. The numerical simulations for the Rössler system and the Duffing oscillator are provided to show the effectiveness of this method. Copyright © 2005 by ASME.
Resumo:
In this paper, we deal with the research of a proposed mathematical model of energy harvesting, including nonlinearities in the piezoelectric coupling and a non-ideal force of excitation. We showed using numerical simulations to analysis of the dynamic responses that, the power harvested was influenced by the nonlinear vibrations of the structure, as well as by the influence of the non-linearities in the piezoelectric coupling. We concluded through of the numerical results that the limited energy source was interacting with the system. Thus, the increasing of the voltage in DC motor led the system produce a good power response, especially in high-energy orbits in the resonance region, but the Sommerfeld effect occurs in the system and a chaotic behavior was found in the post-resonance region. So the power harvested along the time decreases because occurs loses of energy due the interaction between energy source and structure. Keeping the energy harvested constant over time is essential to make possible the use of energy harvesting systems in real applications. To achieve this objective, we applied a control technique in order to stabilize the chaotic system in a periodic stable orbit. We announced that the results were satisfactory and the control maintained the system in a stable condition. © 2012 Foundation for Scientific Research and Technological Innovation.