32 resultados para muscarinic activation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mechanisms by which arthritis-provoking pathogens such as Yersinia enterocolitica interact with the human immune system to produce inflammatory synovitis are not well known. One of the immunomodulating mechanisms used against these pathogens is the polyclonal activation of lymphocytes. In this study, we investigated the extent of the B-lymphocyte activation induced in mice by a strain of Y. enterocolitica O:3 (FCF 526) isolated from a patient with arthritis, and compared it with two other strains, a virulent one (FCF 397[+]) isolated from a patient without arthritis and its plasmidless isogenic pair (FCF397[-]). Also we investigated the production of autoantibodies in mice infected with these different strains. SPF Swiss mice were infected intravenously with a suspension of Y. enterocolitica . Spleen cells were taken on days 7, 14, 21 and 28 after infection and the number of cells secreting nonspecific and specific antibodies of IgG 1 , IgG 2a , IgG 2b , IgG 3 , IgM and IgA isotypes were determined by the ELISPOT technique. The presence of autoantibodies in mouse serum was investigated by the dot-blot assay. The pattern of infection of the three bacterial strains were almost the same. We observed a general increase in the number of nonspecific Ig-secreting cells with all three strains, and the greatest increases observed were in the IgG 2a and IgG 3 isotypes. Only a small fraction of the immunoglobulins detected were antibacterial, suggesting that the rest resulted from polyclonal B cell activation. The strain isolated from the patient with arthritis (FCF526) induced the greatest production of autoantibodies, coinciding with the period in which the greatest activation of nonspecific B lymphocytes was seen. There were no signs of arthritis or inflammation in the joints of the infected animals. Based on our results, we were unable to determine whether there is an association between the arthritogenic capability of Y. enterocolitica and polyclonal activation of B cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely acknowledged that the indoleamine neurotransmitter serotonin (5-HT) plays a dual role in the regulation of anxiety, a role that in part depends upon neuroanatomical locus of action. Thus, whereas stimulation of 5-HT1A or 5-HT2 receptors in the limbic forebrain (amygdala, hippocampus) enhances anxiety-like responding in rodents, activation of corresponding receptor populations in the midbrain periaqueductal grey (PAG) more often than not reduce anxiety-like behaviour. The present study specifically concerns the anxiety-modulating influence of 5-HT2 receptors within the mouse PAG. Experiment 1 assessed the effects of intra-PAG infusions of the 5-HT2B/2C receptor agonist mCPP (0, 0.03, 0.1 or 0.3 nmol/0.1 mu l) on the behaviour of mice exposed to the elevated plus-maze. As mCPP acts preferentially at 5-HT2B and 5-HT2C receptors, Experiment 2 investigated its effects in animals pretreated with ketanserin, a preferential 5-HT2A/2C receptor antagonist. In both cases, test sessions were videotaped and subsequently, scored for anxiety-like behaviour (e.g., percentage of open arm entries and percentage of open arm time) as well as general locomotor activity (closed arm entries). The results of Experiment I showed that mCPP microinfusions (0.03 and 0.1 nmol) into the PAG of mice decreased behavioural indices of anxiety without significantly altering general activity measures. In Experiment 2, the anxiolytic-like profile of intra-PAG mCPP (0.03 nmol) was substantially attenuated by intra-PAG pretreatment with an intrinsically inactive dose of the preferential 5-HT2A/2C receptor antagonist, ketanserin (10 nmol/0.1 mu l). Together, these data suggest that 5HT(2C) receptor populations within the midbrain PAG play an inhibitory role in plus-maze anxiety in mice. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that glucocorticoids induce peripheral insulin resistance in rodents and humans. Here, we investigated the structural and ultrastructural modifications, as well as the proteins involved in beta-cell function and proliferation, in islets from insulin-resistant rats. Adult male Wistar rats were made insulin resistant by daily administration of dexamethasone (DEX; 1mg/kg, i.p.) for five consecutive days, whilst control (CTL) rats received saline alone. Structure analyses showed a marked hypertrophy of DEX islets with an increase of 1.7-fold in islet mass and of 1.6-fold in islet density compared with CTL islets (P < 0.05). Ultrastructural evaluation of islets revealed an increased amount of secreting organelles, such as endoplasmic reticulum and Golgi apparatus in DEX islets. Mitotic figures were observed in DEX islets at structural and ultrastructural levels. Beta-cell proliferation, evaluated at the immunohistochemical level using anti-PCNA (proliferating cell nuclear antigen), showed an increase in pancreatic beta-cell proliferation of 6.4-fold in DEX islets compared with CTL islets (P < 0.0001). Increases in insulin receptor substrate-2 (IRS-2), phosphorylated-serine-threonine kinase AKT (p-AKT), cyclin D(2) and a decrease in retinoblastoma protein (pRb) levels were observed in DEX islets compared with CTL islets (P < 0.05). Therefore, during the development of insulin resistance, the endocrine pancreas adapts itself increasing beta-cell mass and proliferation, resulting in an amelioration of the functions. The potential mechanisms that underlie these events involve the activation of the IRS-2/AKT pathway and activation of the cell cycle, mediated by cyclin D(2). These adaptations permit the maintenance of glycaemia at near-physiological ranges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective-To evaluate the cardiorespiratory and intestinal effects of the muscarinic type-2 (M-2) antagonist, methoctramine, in anesthetized horses.Animals-6 horses.Procedure-Horses were allocated to 2 treatments in a randomized complete block design. Anesthesia was maintained with halothane (1% end-tidal concentration) combined with a constant-rate infusion of xylazine hydrochloride (1 mg/kg/h, IV) and mechanical ventilation. Hemodynamic variables were monitored after induction of anesthesia and for 120 minutes after administration of methoctramine or saline (0.9% NaCl) solution (control treatment). Methoctramine was given at 10-minute intervals (10 mug/kg, IV) until heart rate (HR) increased at least 30% above baseline values or until a maximum cumulative dose of 30 mug/kg had been administered. Recovery characteristics, intestinal auscultation scores, and intestinal transit determined by use of chromium oxide were assessed during the postanesthetic period.Results-Methoctramine was given at a total cumulative dose of 30 mug/kg to 4 horses, whereas 2 horses received 10 mug/kg. Administration of methoctramine resulted in increases in HR, cardiac output, arterial blood pressure, and tissue oxygen delivery. Intestinal auscultation scores and intestinal transit time (interval to first and last detection of chromium oxide in the feces) did not differ between treatment groups.Conclusions and Clinical Relevance-Methoctramine improved hemodynamic function in horses anesthetized by use of halothane and xylazine without causing a clinically detectable delay in the return to normal intestinal motility during the postanesthetic period. Because of their selective positive chronotropic effects, M-2 antagonists may represent a safe alternative for treatment of horses with intraoperative bracycardia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To investigate the role of MMP-2 and MMP-9 in cardiac remodelling induced by tobacco smoke exposure in rats.Methods: Rats were allocated into two groups: C (n = 9): control animals; ETS (n = 9): exposed to tobacco smoke. After 4months, the animals underwent echocardiography, morphometric study and determination of MMP-2 and MMP-9 activity.Results: ETS rats had larger diastolic (C= 15.6 +/- 1.2 mm/kg, ETS = 18.0 +/- 0.9 mm/kg; p < 0.001) and systolic (C= 7.3 +/- 1.2 mm/kg, ETS = 9.2 0.9 mm/kg; p = 0.001) ventricular diameters adjusted for body weight. Fractional shortening (C= 53 +/- 4.8%, ETS = 48 +/- 3.3%; p = 0.031) and ejection fraction (C= 0. 89 +/- 0.03 5 ETS = 0. 86 +/- 0.02; p = 0.03 0) were smaller in the ETS group. Myocyte cross-sectional area (C= 245 8 mu m(2), ETS=253 8 mu m(2); p = 0.028) was higher in ETS rats. There were no differences in MNtP-2 (C=50 +/- 14%; ETS 43 +/- 11%, p 0.22 +/- 8) or MMP-9 (C=0.36 +/- 0.3%; ETS=0.62 +/- 0.3%, p=0.630) activity between the groups.Conclusion: MMP-2 and MMP-9 did not participate in the remodelling process induced by tobacco smoke exposure. (c) 2007 European Society of Cardiology. Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of indomethacin (Indo), a cyclo-oxygenase inhibitor, on the monocyte-mediated killing of a low-(Pb265) and a high-(Pb18) virulence strain of Paracoccidioides brasiliensis was examined. The Pb18 strain was not killed by either non-activated or interferon-gamma (IFN-gamma)-activated human monocytes but these cells did show fungicidal activity if pretreated with Indo. In contrast with IFN-gamma tumour necrosis factor-alpha (TNF-alpha) was very effective at stimulating the fungicidal activity of monocytes. While the low-virulence strain, Pb265, could not be killed by monocytes, cells preincubated with IFN-gamma demonstrated fungicidal activity. The killing of this strain was also induced by pretreatment of monocytes with Indo. The results suggest a negative role for prostaglandins, which are synthesized via the cyclo-oxygenase pathway, in the regulation of monocyte-mediated killing of virulent and avirulent strains of P. brasiliensis and that TNF-alpha generation during the fungus-monocyte interaction is more important in the killing of Pb265 than Pb18.