70 resultados para hybrid intelligent systems


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cuttings return analysis is an important tool to detect and prevent problems during the petroleum well drilling process. Several measurements and tools have been developed for drilling problems detection, including mud logging, PWD and downhole torque information. Cuttings flow meters were developed in the past to provide information regarding cuttings return at the shale shakers. Their use, however, significantly impact the operation including rig space issues, interferences in geological analysis besides, additional personel required. This article proposes a non intrusive system to analyze the cuttings concentration at the shale shakers, which can indicate problems during drilling process, such as landslide, the collapse of the well borehole walls. Cuttings images are acquired by a high definition camera installed above the shakers and sent to a computer coupled with a data analysis system which aims the quantification and closure of a cuttings material balance in the well surface system domain. No additional people at the rigsite are required to operate the system. Modern Artificial intelligence techniques are used for pattern recognition and data analysis. Techniques include the Optimum-Path Forest (OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC). Field test results conducted on offshore floating vessels are presented. Results show the robustness of the proposed system, which can be also integrated with other data to improve the efficiency of drilling problems detection. Copyright 2010, IADC/SPE Drilling Conference and Exhibition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multinodal load forecasting deals with the loads of several interest nodes in an electrical network system, which is also known as bus load forecasting. To perform this demand, it is necessary a technique that is precise, trustable and has a short-time processing. This paper proposes two methodologies based on general regression neural networks for short-term multinodal load forecasting. The first individually forecast the local loads and the second forecast the global load and individually forecast the load participation factors to estimate the local loads. To design the forecasters it wasn't necessary the previous study of the local loads. Tests were made using a New Zealand distribution subsystem and the results obtained are compatible with the ones founded in the specialized literature. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we propose an accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the Time Domains Reflectometry method for signal acquisition, which was further analyzed by OPF and several other well known pattern recognition techniques. The results indicated that OPF and Support Vector Machines outperformed Artificial Neural Networks classifier. However, OPF has been much more efficient than all classifiers for training, and the second one faster for classification. © 2011 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents an Advanced Traveler Information System (ATIS) developed on Android platform, which is open source and free. The developed application has as its main objective the free use of a Vehicle-to- Infrastructure (V2I) communication through the wireless network access points available in urban centers. In addition to providing the necessary information for an Intelligent Transportation System (ITS) to a central server, the application also receives the traffic data close to the vehicle. Once obtained this traffic information, the application displays them to the driver in a clear and efficient way, allowing the user to make decisions about his route in real time. The application was tested in a real environment and the results are presented in the article. In conclusion we present the benefits of this application. © 2012 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work is to develop a methodology for electric load forecasting based on a neural network. Here, backpropagation algorithm is used with an adaptive process that based on fuzzy logic and using a decaying exponential function to avoid instability in the convergence process. This methodology results in fast training, when compared to the conventional formulation of backpropagation algorithm. The results are presented using data from a Brazilian Electric Company, and shows a very good performance for the proposal objective.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Robotic vehicle navigation in unstructured and uncertain environments is still a challenge. This paper presents the implementation of a multivalued neurofuzzy controller for autonomous ground vehicle (AGVs) in indoor environments. The control system consists of a hierarchy of mobile robot using multivalued adaptive neuro-fuzzy inference system behaviors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One common problem in all basic techniques of knowledge representation is the handling of the trade-off between precision of inferences and resource constraints, such as time and memory. Michalski and Winston (1986) suggested the Censored Production Rule (CPR) as an underlying representation and computational mechanism to enable logic based systems to exhibit variable precision in which certainty varies while specificity stays constant. As an extension of CPR, the Hierarchical Censored Production Rules (HCPRs) system of knowledge representation, proposed by Bharadwaj & Jain (1992), exhibits both variable certainty as well as variable specificity and offers mechanisms for handling the trade-off between the two. An HCPR has the form: Decision If(preconditions) Unless(censor) Generality(general_information) Specificity(specific_information). As an attempt towards evolving a generalized knowledge representation, an Extended Hierarchical Censored Production Rules (EHCPRs) system is suggested in this paper. With the inclusion of new operators, an Extended Hierarchical Censored Production Rule (EHCPR) takes the general form: Concept If (Preconditions) Unless (Exceptions) Generality (General-Concept) Specificity (Specific Concepts) Has_part (default: structural-parts) Has_property (default:characteristic-properties) Has_instance (instances). How semantic networks and frames are represented in terms of an EHCPRs is shown. Multiple inheritance, inheritance with and without cancellation, recognition with partial match, and a few default logic problems are shown to be tackled efficiently in the proposed system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work begins with a review of the literature on bit selection methods for oil well drilling. A proposal for the structure and organization of a drilling database and a knowledge base, is described. Previous studies formed the principal elements in the process of selection of drills for proposed drilling. The procedure was implemented as a computer system for the selection of tricone bits. A drilling bit database for three different Brazilian sedimentary basins was obtained for several wells drilled, and knowledge was collected from drilling engineers from different fields both electronically and also by means of interviews. It can be concluded that the selection process showed good results based on tests, which were carried out.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of algorithms for active vibration control in flexible structures became an area of enormous interest for some researchers due to the innumerable requirements for better performance in mechanical systems, as for instance, aircrafts and aerospace structures. Intelligent systems, constituted for a base structure with sensors and actuators connected, are capable to guarantee the demanded conditions, through the application of diverse types of controllers. For the project of active controllers it is necessary, in general, to know a mathematical model that enable the representation in the space of states, preferential in modal coordinates to permit the truncation of the system and reduction in the order of the controllers. For practical applications of engineering, some mathematical models based in discrete-time systems cannot represent the physical problem, therefore, techniques of identification of system parameters must be used. The techniques of identification of parameters determine the unknown values through the manipulation of the input (disturbance) and output (response) signals of the system. Recently, some methods have been proposed to solve identification problems although, none of them can be considered as being universally appropriate to all the situations. This paper is addressed to an application of linear quadratic regulator controller in a structure where the damping, stiffness and mass matrices were identified through Chebyshev's polynomial functions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this paper is to introduce a new approach for edge detection in gray shaded images. The proposed approach is based on the fuzzy number theory. The idea is to deal with the uncertainties concerning the gray shades making up the image, and thus calculate the appropriateness of the pixels in relation to an homogeneous region around them. The pixels not belonging to the region are then classified as border pixels. The results have shown that the technique is simple, computationally efficient and with good results when compared with both the traditional border detectors and the fuzzy edge detectors. © 2007 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a model for the control of the radiation pattern of a circular array of antennas, shaping it to address the radiation beam in the direction of the user, in order to reduce the transmitted power and to attenuate interference. The control of the array is based on Artificial Neural Networks (ANN) of the type RBF (Radial Basis Functions), trained from samples generated by the Wiener equation. The obtained results suggest that the objective was reached.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper uses artificial neural networks (ANN) to compute the resonance frequencies of rectangular microstrip antennas (MSA), used in mobile communications. Perceptron Multi-layers (PML) networks were used, with the Quasi-Newton method proposed by Broyden, Fletcher, Goldfarb and Shanno (BFGS). Due to the nature of the problem, two hundred and fifty networks were trained, and the resonance frequency for each test antenna was calculated by statistical methods. The estimate resonance frequencies for six test antennas were compared with others results obtained by deterministic and ANN based empirical models from the literature, and presented a better agreement with the experimental values.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An agent based model for spatial electric load forecasting using a local movement approach for the spatiotemporal allocation of the new loads in the service zone is presented. The density of electrical load for each of the major consumer classes in each sub-zone is used as the current state of the agents. The spatial growth is simulated with a walking agent who starts his path in one of the activity centers of the city and goes to the limits of the city following a radial path depending on the different load levels. A series of update rules are established to simulate the S growth behavior and the complementarity between classes. The results are presented in future load density maps. The tests in a real system from a mid-size city show a high rate of success when compared with other techniques. The most important features of this methodology are the need for few data and the simplicity of the algorithm, allowing for future scalability. © 2009 IEEE.