214 resultados para freeze thawing
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using a freeze-etch technique the cytoplasmic and plasma membrane ultrastructure of Paracoccidiodies brasiliensis yeast-phase cells was studied. The multinucleate yeast-phase cells which grow by simultaneous multiple budding, like those of Mucor sp. contain several nuclei, mitochondria, well-developed ER, small vacuoles and lipid droplets. Complex structures with no apparent connexion to the plasma membrane of P. brasiliensis usually lack inveginations, but invaginations which do occur are always rod-shaped which indicates P. brasiliensis to be of either ascomycetous or basidiomycetous origin.
Resumo:
Phase transitions of freeze-dried persimmon in a large range of moisture content were determined by differential scanning calorimetry (DSC). In order to study this transitions at low and intermediate moisture content domains, samples were conditioned by adsorption at various water activities (a(w) = 0.11-0.90) at 25 degreesC. For the high moisture content region, samples were obtained by water addition. At a(w) less than or equal to 0.75 two glass transitions were visible, with T(g) decreasing with increasing water activity due to water plasticizing effect. The first T(g) is due to the matrix formed by sugars and water, the second one, less visible and less plasticized by water, is probably due to macromolecules of the fruit pulp. At a(w) between 0.80 and 0.90 a devitrification peak appeared after T(g) and before T(m). At this moisture content range, the Gordon-Taylor model represented satisfactorily the matrix glass transition curve. At the higher moisture content range (a(w) > 0.90), the more visible phenomenon was the ice melting. T(g) appeared less visible because the enthalpy change involved in glass transition is practically negligible in comparison with the latent heat of melting. In the high moisture content domain T(g) remained practically constant around T(g)' (-56.6 degreesC). (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Glass transition temperature of freeze-dried pineapple conditioned by adsorption at various water activities at 25 degreesC was determined by differential scanning calorimetry (DSC). High moisture content samples corresponding to water activities higher than 0.9, obtained by liquid water addition, were also analysed. The DSC traces showed a well-visible shift in baseline at the glass transition temperature (T(g)). Besides, no ice formation was observed until water activity was equal to 0.75. For water activities lower than 0.88, the glass transition curve showed that T(g) decreased with increasing moisture content and the experimental data could be well-correlated by the Gordon-Taylor equation. For higher water activities, this curve exhibited a discontinuity, with suddenly increasing glass transition temperatures approaching a constant value that corresponds to the T(g) of the maximally freeze-concentrated amorphous matrix. The unfreezable water content was determined through melting enthalpy dependence on the sample moisture content.
Resumo:
Glass transition temperatures of freeze-dried tomato conditioned at various water activities at 25 C were determined by differential scanning calorimetry (DSC). Air-dried tomato with and without osmotic pre-treatment in sucrose/NaCl solutions was also analyzed. Thermograms corresponding to the low water activity domain (0.11 less than or equal to a(w) less than or equal to 0.75) revealed the existence of two glass transitions, which were attributed to separated phases formed by sugars and water and other natural macromolecules present in the vegetable. Both transitions were plasticized by water and experimental data could be well correlated by the Gordon-Taylor equation in the low-temperature domain, and by the Kwei model in the high-temperature domain. For higher water activities, the low-temperature glass transition curve exhibited a discontinuity, with suddenly increased glass transition temperatures approaching a constant value that corresponds to the T-g of the maximally freeze-concentrated amorphous matrix. The unfreezable water content was determined through the melting enthalpy dependence on the moisture content. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Background: Maxillary sinus floor augmentation procedures are currently the treatment of choice when the alveolar crest of the posterior maxilla is insufficient for dental implant anchorage. This procedure aims to obtain enough bone with biomaterial association with the autogenous bone graft to create volume and allow osteo conduction. The objective of this study was to histologically and histometrically evaluate the bone formed after maxillary sinus floor augmentation by grafting with a combination of autogenous bone, from the symphyseal area mixed with DFDBA or hydroxyapatite.Methods: Ten biopsies were taken from 10 patients 10 months after sinus floor augmentation using a combination of 50% autogenous bone plus 50% dernineralized freeze-dried bone allograft (DFDBA group) or 50% autogenous bone plus 50% hydroxyapatite (HA group). Routine histological processing and staining with hernatoxylin and eosin and Masson's trichrome were performed.Results: the histomorphometrical analysis indicated good regenerative results in both groups for the bone tissue mean in the grafted area (50.46 +/- 16.29% for the DFDBA group and 46.79 +/- 8.56% for the HA group). Histological evaluation revealed the presence of mature bone with compact and cancellous areas in both groups. The inflammatory infiltrate was on average nonsignificant and of mononuclear prevalence. Some biopsies showed blocks of the biomaterial in the medullary spaces close to the bone wall, with absence of osteogenic activity.Conclusions: the results indicated that both DFDBA and HA associated with an autogenous bone graft were biocompatible and promoted osteoconduction, acting as a matrix for bone formation. However, both materials were still present after 10 months.
Resumo:
The usual particle emission scenario used in hydrodynamics presupposes that particles instantaneously stop interacting (freeze-out) once they reach some three dimensional surface. Another formalism has been developed recently where particle emission occurs continuously during the whole expansion of thermalized matter. Here we compare both mechanisms in a simplified hydrodynamical framework and show that they lead to a drastically different interpretation of data.
Resumo:
The effect of the continuous emission hypothesis on the two-pion Bose-Einstein correlation function is discussed and compared with the corresponding results based on the usual freeze-out. Sizable differences in the correlation function appear in these different descriptions of the decoupling process. This means that, when extracting properties of the hot matter formed in high-energy heavy-ion collisions from the data, completely different conclusions may be reached according to the description of the particle emission process adopted.
Resumo:
Differential scanning calorimetry (DSC) was used to determine phase transitions of freeze-dried plums. Samples at low and intermediate moisture contents, were conditioned by adsorption at various water activities (0.11≤a w≤0.90) at 25°C, whereas in the high moisture content region (a w>0.90) samples were obtained by direct water addition, with the resulting sorption isotherm being well described by the Guggenheim-Anderson-deBoer (GAB) model. Freeze-dried samples of separated plum skin and pulp were also analysed. At a w≤0.75, two glass transitions were visible, with the glass transition temperature (T g) decreasing with increasing a w due to the water plasticising effect. The first T g was attributed to the matrix formed by sugars and water. The second one, less visible and less plasticised by water, was probably due to macromolecules of the fruit pulp. The Gordon-Taylor model represented satisfactorily the matrix glass transition curve for a w≤0.90. In the higher moisture content range T g remained practically constant around T g′ (-57.5°C). Analysis of the glass transition curve and the sorption isotherm indicated that stability at a temperature of 25°C, would be attained by freeze dried plum at a water activity of 0.04, corresponding to a moisture content of 12.9% (dry basis). © 2006 SAGE Publications.
Resumo:
Objective: The objective of this study was evaluate if the embryos cryopreservation from OHSS patients Intracytoplasmic Sperm Injection (ICSI) cycles could be influence the clinical outcomes when compared to patients who receive oocytes from donors but the endometrium was not prepared and the embryos were cryopreserved. Methods: Fifty eight couples submitted to ICSI cycles in which 26 with OHSS clinical manifestation (OHSS group) and 32 couples who have received oocytes from donors (control group). The embryos were frozen on day+2 or +3of development. All patients included in this study had embryos crypreserved before the transfer, and in the thawing cycle, only the endometrium preparation was performed. The embryo survival, implantation, pregnancy and miscarriage rates were evaluated in the embryo thawing cycle. Results: There was no difference among the groups in relation to fertilization rate (OHSS: 71.89% ± 15.45, Control: 79.75% ± 21.68, p= 0.234), survival embryos rate (OHSS: 68.85 ± 21.10, Control: 59.53 ± 36.79, p= 0.233), high quality embryos rate (OHSS: 25.20 ± 23.90, Control: 27.40 ± 30.30, p= 0.760), implantation rate (OHSS: 17.9 ± 26.9, Control: 12.5 ± 23.7, p= 0.435), pregnancy rate (OHSS: 38.50, Control: 28.60, p= 0.441) and miscarriage rate (OHSS: 40.00, Control: 25.00, p= 0.332). Conclusion: Our findings suggest that clinical outcomes in freeze and thawing cycles were not affected by the presence of ovarian hyperstimulation syndrome clinical manifestation after controlled ovarian stimulation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)