20 resultados para energy deposited
Resumo:
The objective of the present study was to investigate the effects of dietary macronutrient ratio on energy metabolism and on skeletal muscle mRNA expression of avian uncoupling protein (UCP), thought to be implicated in thermogenesis in birds. Broiler chickens from 2 to 6 weeks of age received one of three isoenergetic diets containing different macronutrient ratios (low-lipid (LL) 30 v. 77 g lipid/kg-, low-protein (LP) 125 v. 197 g crude protein (N X 6.25)/kg; low-carbohydrate (LC) 440 v. 520 g carbohydrate/kg). LP chickens were characterised by significantly lower body weights and food intakes compared with LL and LC chickens (-47 and -38% respectively) but similar heat production/kg metabolic body weight, as measured by indirect calorimetry, in the three groups. However, heat production/g food ingested was higher in animals receiving the LP diet (+41%, P<0.05). These chickens also deposited 57% less energy as protein (P<0.05) and 33% more as fat. No significant differences in energy and N balances were detected between LL and LC chickens. The diets with the higher fat contents (i.e. The LP and LC diets) induced slightly but significantly higher relative expressions of avian UCP mRNA in gastrocnemius muscle, measured by reverse transcription-polymerase chain reaction, than the LL diet (88 and 90 v. 78% glyceraldehyde-3-phosphate dehydrogenase respectively, P<0.05). Our present results are consistent with the recent view that UCP homologues could be involved in the regulation of lipid utilisation as fuel substrate and provide evidence that the macronutrient content of the diet regulates energy metabolism and especially protein and fat deposition.
Resumo:
This work describes the influence of the ion bombardment on the electrical, optical and mechanical properties of polymer films deposited from radio-frequency plasmas of benzene. Irradiations were conducted using N+ at 5 x 10(19) ions/m(2), varying the ion energy, E-0, from 0 to 150 keV. Film elemental composition was determined by Rutherford backscattering spectroscopy. Electrical resistivity and hardness were obtained by the two-point probe and nanoindentation technique, respectively. Ultraviolet-visible spectroscopy was employed to investigate the optical constants of the samples. Etching rate was determined by exposure of the films to reactive oxygen plasmas. Ion bombardment induced gradual loss of H and increase in C and O concentrations with Eo. As a consequence the electrical, optical and mechanical properties were drastically affected. Interpretation of these results is proposed in terms of chain cross-linking and unsaturation. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)