144 resultados para cholinergic agonist


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peripheral treatment with the cholinergic agonist pilocarpine induces intense salivation that is inhibited by central injections of the alpha(2)-adrenergic/imidazoline receptor agonist moxonidine. Salivary gland blood flow controlled by sympathetic and parasympathetic systems may affect salivation. We investigated the changes in mean arterial pressure (MAP) and in the vascular resistance in the submandibular/sublingual gland (SSG) artery, superior mesenteric (SM) artery and low abdominal aorta (hindlimb) in rats treated with intraperitoneal (i.p.) pilocarpine alone or combined with intracerebroventricular (i.c.v.) moxonidine. Male Holtzman rats with stainless steel cannula. implanted into lateral ventricle (LV) and anesthetized with urethane were used. Pilocarpine (4 mumol/kg of body weight) i.p. reduced SSG vascular resistance (-50 +/- 13% vs. vehicle: 5 +/- 3%). Pilocarpine i.p. also increased mesenteric vascular resistance (15 +/- 5% vs. vehicle: 2 +/- 3%) and MAP (16 +/- 3 mmHg, vs. vehicle: 2 +/- 3 mmHg). Moxonidine (20 nmol) i.c.v. increased SSG vascular resistance (88 +/- 12% vs. vehicle: 7 +/- 4%). When injected 15 min following i.c.v. moxonidine, pilocarpine i.p. produced no change on SSG vascular resistance. Pilocarpine-induced pressor responses and increase in mesenteric vascular resistance were not modified by i.c.v. moxonidine. The treatments produced no change in heart rate (HR) and hindlimb vascular resistance. The results show that (1) i.p. pilocarpine increases mesenteric vascular resistance and MAP and reduces salivary gland vascular resistance and (2) central moxonidine increases salivary gland vascular resistance and impairs pilocarpine-induced salivary gland vasodilatation. Therefore, the increase in salivary gland vascular resistance may play a role in the anti-salivatory response to central moxonidine. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Besides other physiological functions, adenosine-5'-triphosphate (ATP) is also a neurotransmitter that acts on purinergic receptors. In spite of the presence of purinergic receptors in forebrain areas involved with fluid-electrolyte balance, the effect of ATP on water intake has not been investigated. Therefore, we studied the effects of intracerebroventricular (icv) injections of ATP (100, 200 and 300 nmol/µL) alone or combined with DPCPX or PPADS (P1 and P2 purinergic antagonists, respectively, 25 nmol/µL) on water intake induced by water deprivation. In addition, the effect of icv ATP was also tested on water intake induced by intragastric load of 12% NaCl (2 mL/rat), acute treatment with the diuretic/natriuretic furosemide (20 mg/kg), icv angiotensin II (50 ng/µL) or icv carbachol (a cholinergic agonist, 4 nmol/µL), on sodium depletion-induced 1.8% NaCl intake, and on food intake induced by food deprivation. Male Holtzman rats (280-320 g, N = 7-11) had cannulas implanted into the lateral ventricle. Icv ATP (300 nmol/µL) reduced water intake induced by water deprivation (13.1 ± 1.9 vs saline: 19.0 ± 1.4 mL/2 h; P < 0.05), an effect blocked by pre-treatment with PPADS, but not DPCPX. Icv ATP also reduced water intake induced by NaCl intragastric load (5.6 ± 0.9 vs saline: 10.3 ± 1.4 mL/2 h; P < 0.05), acute furosemide treatment (0.5 ± 0.2 vs saline: 2.3 ± 0.6 mL/15 min; P < 0.05), and icv angiotensin II (2.2 ± 0.8 vs saline: 10.4 ± 2.0 mL/2 h; P < 0.05), without changing icv carbachol-induced water intake, sodium depletion-induced 1.8% NaCl intake and food deprivation-induced food intake. These data suggest that central ATP, acting on purinergic P2 receptors, reduces water intake induced by intracellular and extracellular dehydration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect in rats of an anteroventral third ventricle (AV3V) electrolytic lesion on salivary secretion induced by intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) injection of a cholinergic agonist (pilocarpine) was investigated. Sham- or AV3V-lesioned rats anesthetized with urethane and with a stainless steel cannula implanted into the lateral ventricle (LV) were used. The amount of salivary secretion was studied over a seven-minute period after i.c.v. or i.p. injection of pilocarpine. In sham-operated rats, i.p. injection of pilocarpine (1 mg/kg b.w.) (after 6 h, 2, 7, and 15 days) produced salivary secretion (486 +/- 21, 778 +/- 85, 630 +/- 50, and 560 +/- 55 mg/7 min, respectively). This effect was reduced 6 h, 2, and 7 days after an AV3V lesion (142 +/- 22, 113 +/- 32, and 290 +/- 62 mg/7 min, respectively), but not 15 days after an AV3V lesion (516 +/- 19 mg/7 min). I.c.v. injection of pilocarpine (120 mug in 1 muL), in sham-operated rats after 6 h, 2, 7, and 15 days also produced salivary secretion (443 +/- 20, 417 +/- 81, 496 +/- 14, and 427 +/- 47 mg/7 min, respectively). The effects of i.c.v. pilocarpine were also reduced 6 h, 2, and 7 days after an AV3V lesion (143 +/- 19, 273 +/- 14, and 322 +/- 17 mg/7 min, respectively), but not after 15 days (450 +/- 28 mg/7 min). The results demonstrate that the central nervous system, and particularly the AV3V region, is important for the effect of pilocarpine on salivary secretion in rats. Moreover, they suggest that activation of central pathways may play an important part in the salivary secretion to peripheral pilocarpine in rats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study, we investigated the effect of anteroventral third ventricle (AV3V) lesion on pressor, tachycardic, dipsogenic, natriuretic, and kaliuretic responses induced by the injection of the cholinergic agonist carbachol into the ventromedial hypothalamic nucleus (VMH) of rats. Male rats with sham or AV3V lesion and a stainless steel cannula implanted into the VMH were used. Carbachol (2 nmol) injected into the VMH of sham rats produced pressor (32 +/- 4 mmHg). tachycardic (83 +/- 14 bpm), dipsogenic (8.2 +/- 1.1 ml/h). natriuretic (320 +/- 46-mu-Eq/120 min), and kaliuretic (155 +/- 20-mu-Eq/120 min) responses. In AV3V-lesioned rats (2 and 15 days), the pressor (4 +/- 2 and 15 +/- 2 mmHg. respectively), dipsogenic (0.3 +/-0.2 and 1.4 +/- 0.7 ml/h), natriuretic (17 +/- 7 and 99 +/- 21-mu-Eq/120 min), and kaliuretic (76 +/- 14 and 79 +/- 7-mu-Eq/120 min) responses induced by carbachol injection into the VMH were reduced. The tachycardia was also abolished (27 +/- 15 and -23 +/-29 bpm, respectively). These results show that the AV3V region is essential for the pressor, tachycardic, dipsogenic, natriuretic. and kaliuretic responses induced hy cholinergic activation of the VMH in rats.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present study we investigated the effect of electrolytic lesion of the medial septal area (MSA) on the dipsogenic, natriuretic, kaliuretic and pressor responses elicited by intracerebroventricular (i.c.v.) injection of the cholinergic agonist carbachol. Freely moving rats with sham or MSA lesion (1-7 days and 14-18 days) and a stainless steel cannula implanted into the lateral ventricle were studied. In sham rats, i.c.v. injection of carbachol (7.5 nmol) produced an increase in water intake (10.2 ± 1.5 ml/h), mean arterial pressure (MAP) (35 ± 5 mmHg) and urinary Na+ and K+ excretion (551 ± 83 and 170 ± 17 μEq 120 min, resp.). The pressor (18 ± 3 and 14 ± 4 mmHg, resp.) and natriuretic responses (178 ± 58 and 172 ± 38 μEq 120 min) produced by i.c.v. carbachol in acute or chronic MSA-lesioned rats were reduced. No change was observed in urinary K+ excretion and a reduced water intake (5 ± 1.3 ml/h) was observed only in acute MSA-lesioned rats. These results suggest that the MSA plays an important role for the pressor and natriuretic responses induced by central cholinergic activation in rats. A small influence of this structure on water intake may also be suggested. © 1991.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study we investigated the effect of the anteroventral third ventricle (AV3V) lesion on the pressor, bradycardic, natriuretic, kaliuretic, and dipsogenic responses induced by the injection of the cholinergic agonist carbachol into the lateral preoptic area (LPOA) in rats. Male Holtzman rats with sham or electrolytic AV3V lesion were implanted with stainless steel cannula directly into the LPOA. Injection of carbachol (7.5 nmol) into the LPOA of sham rats induced natriuresis (405 ± 66 μEq/120 min), kaliuresis (234 ± 44 μEq/120 min), water intake (9.5 ± 1.7 ml/60 min), bradycardia (-47 ± 11 bpm), and increase in mean arterial pressure (28 ± 3 mmHg). Acute AV3V lesion (1-5 days) reduced the natriuresis (12 ± 4 μEq/120 min), kaliuresis (128 ± 27 μEq/120 min), water intake (1.7 ± 0.9 ml/60 min), and pressor responses (14 ± 4 mmHg) produced by carbachol into the LPOA. Tachycardia instead of bradycardia was also observed. Chronic (14-18 days) AV3V lesion reduced only the pressor response (10 ± 2 mmHg) induced by carbachol. These results showed that acute, but not chronic, AV3V lesion reduced the natriuretic, kaliuretic, and dipsogenic responses to carbachol injection into the LPOA. The pressor response was reduced in acute or chronic AV3V-lesioned rats. The results suggest that the lateral areas may control the fluid and electrolyte balance independently from the AV3V region in chronic AV3V-lesioned rats. © 1992.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: Peripheral treatment with the cholinergic agonist pilocarpine increases salivary gland blood flow and induces intense salivation that is reduced by the central injection of moxonidine (aα-adrenoceptors/ imidazoline agonist). In the present study, we investigated the effects of the intracerebroventricular (i.c.v.) injection of pilocarpine alone or combined with moxonidine also injected i.c.v. On submandibular/sublingual gland (SSG) vascular resistance. In addition, the effects of these treatments on arterial pressure, heart rate and on mesenteric and hindlimb vascular resistance were also tested. Design: Male Holtzman rats with stainless steel cannula implanted into lateral ventricle and anaesthetized with urethane + α-chloralose were used. Results: Pilocarpine (500 nmol/1 μl) injected i.c.v. Reduced SSG vascular resistance and increased arterial pressure, heart rate and mesenteric vascular resistance. Contrary to pilocarpine alone, the combination of moxonidine (20 nmol/1 μl) and pilocarpine injected i.c.v. Increased SSG vascular resistance, an effect abolished by the pre-treatment with the α2-adrenoceptor antagonist yohimbine (320 nmol/2 μl). The increase in arterial pressure, heart rate and mesenteric resistance was not modified by the combination of moxonidine and pilocarpine i.c.v. Conclusion: These results suggest that the activation of central α2- adrenoceptors may oppose to the effects of central cholinergic receptor activation in the SSG vascular resistance. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bilateral injections of the GABAA agonist muscimol into the lateral parabrachial nucleus (LPBN) disrupt satiety and induce strong ingestion of water and 0.3M NaCl in fluid-replete rats by mechanisms not completely clear. In the present study, we investigated the effects of the blockade of central muscarinic cholinergic receptors with atropine injected intracerebroventricularly (i.c.v.) on 0.3M NaCl and water intake induced by muscimol injections into the LPBN in fluid-replete rats. Male Holtzman rats with stainless steel cannulas implanted bilaterally into the LPBN and unilaterally into the lateral ventricle (LV) were used. Bilateral injections of muscimol (0.5nmol/0.2μL) into the LPBN induced 0.3M NaCl (32.2±9.9mL/4h, vs. saline: 0.4±0.2mL/4h) and water intake (11.4±4.4mL/4h, vs. saline: 0.8±0.4mL/4h) in fluid-replete rats previously treated with i.c.v. injection of saline. The previous i.c.v. injection of atropine (20nmol/1μL) reduced the effects of LPBN-muscimol on 0.3M NaCl (13.5±5.0mL/4h) and water intake (2.9±1.6mL/4h). The i.c.v. injection of atropine did not affect 0.3M NaCl (26.8±6.2mL/2h, vs. saline i.c.v.: 36.5±9.8mL/2h) or water intake (14.4±2.5mL/2h, vs. saline i.c.v.: 15.6±4.8mL/2h) in rats treated with furosemide+captopril subcutaneously combined with bilateral injections of moxonidine (α2-adrenoceptor/imidazoline agonist, 0.5nmol/0.2μL) into the LPBN, suggesting that the effect of atropine was not due to non-specific inhibition of ingestive behaviors. The results show that active central cholinergic mechanisms are necessary for the hypertonic NaCl and water intake induced by the blockade of the inhibitory mechanisms with injections of muscimol into the LPBN in fluid-replete rats. The suggestion is that in fluid-replete rats the action of LPBN mechanisms inhibits facilitatory signals produced by the activity of central cholinergic mechanisms to maintain satiety. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study was performed to investigate the effect of treatment with furosemide on the pressor response induced by intracerebroventricular (i.c.v.) injections of cholinergic (carbachol) and adrenergic (norepinephrine) agonists, angiotensin II (ANGII) and hypertonic saline (HS, 2 M NaCl). The changes induced by furosemide treatment on the pressor response to intravenous (i.v.) norepinephrine, ANGII and arginine vasopressin (AVP) were also studied. Rats with a stainless-steel cannula implanted into the lateral ventricle (LV) were used. Two injections of furosemide (30 mg/kg b.wt. each) were performed 12 and 1 h before the experiments. Treatment with furosemide reduced the pressor response induced by carbachol, norepinephrine and ANGII i.c.v., but no change was observed in the pressor response to i.c.v. 2 M NaCl. The pressor response to i.v. ANGII and norepinephrine, but not AVP, was also reduced after treatment with furosemide. These results show that the treatment with furosemide impairs the pressor responses induced by central or peripheral administration of adrenergic agonist or ANGII, as well as those induced by central cholinergic activation. The results suggest that the treatment with furosemide impairs central and peripheral pressor responses mediated by sympathetic activation and ANGII, but not those produced by AVP. © 1992.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: to compare the efficacy of recombinant LH supplementation for controlled ovarian stimulation in recombinant FSH and GnRH-agonist protocol.Methods: Search strategies included on-line surveys of databases. The fixed effects model was used for odds ratio and effect size (weighted mean difference). Four trials fulfilled the inclusion criteria.Results: a fewer days of stimulation (p < 0.0001), a fewer total amount of r-FSH administered (p < 0.0001) and a higher serum estradiol levels on the day of hCG administration (p < 0.0001) were observed for the r-LH supplementation protocol. However, differences were not observed in number of oocyte retrieved, number of mature oocytes, clinical pregnancy per oocyte retrieval, implantation and miscarriage rates.Conclusions: more randomized controlled trials are necessary before evidence-based recommendations regarding exogenous LH supplementation in ovarian stimulation protocols with FSH and GnRH-agonist for assisted reproduction treatment can be provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To compare the level of apoptosis and DNA fragmentation in the human granulosa cell (GC) layer exposed to an agonist or antagonist of GnRH in intracytoplasmic sperm injection (ICSI) cycles supplemented with recombinant LH (rLH).Study design: Patients without ovulatory dysfunction, aged <= 37 years and in their first ICSI cycle were prospectively randomised to receive either a long GnRH agonist protocol or a multi-dose antagonist protocol. In both groups, recombinant FSH supplemented with rLH was used for ovarian stimulation, and the GCs were collected during oocyte denudation. The GCs were then analysed for DNA fragmentation by TUNEL assay and for apoptosis using the annexin-V assay. The outcomes were given as the percentage of GCs with DNA fragmentation and apoptosis out of the total number of GCs analysed. Comparison of the agonist versus the antagonist group was performed using the Mann-Whitney test.Results: DNA fragmentation: 32 patients were included in either the GnRH agonist group (n = 16) or the antagonist group (n = 16). The percentage of GCs with positive DNA fragmentation did not differ significantly (P = 0.76) between the agonist group (15.5 +/- 9.4%) and the antagonist group (18.8 +/- 13.3%). Apoptosis: 28 patients were included in either the GnRH agonist group (n = 14) or the antagonist group (n = 14). The percentage of GCs positive for apoptosis did not differ significantly (P = 0.78) between the agonist group (34.6 +/- 14.7%) and the antagonist group (36.5 +/- 22%).Conclusions: The results suggest that therapy with either an agonist or antagonist of GnRH is associated with comparable levels of DNA fragmentation and apoptosis in granulosa cells in ICSI cycles supplemented with rLH. (C) 2012 Elsevier B.V. All rights reserved.