55 resultados para cell strain L929
Resumo:
Acalypha californica Benth., is a plant in the northwestern region from Mexico, commonly known as "cancer herb" and used in traditional medicine for treating cancer. In the present study we have investigated the antiproliferative activity of methanolic extract of A. californica and its fractions in cancer cell lines and phytochemical analysis and mechanism of apoptosis of the fractions with antiproliferative activity. The antiproliferative activity of methanol extract and its fractions of solvents were evaluated by MTT assay against the M12.A(k).C3.F6, RAW 264.7, HeLa and L929 cell lines. Active fractions were fractionated by molecular exclusion chromatography, HPLC and MPLC. The identification of compounds was performed by NMR and FIA-ESI-IT-MS/MS analysis. Apoptotic mechanism was analyzed by flow cytometry, determining the reduction in the mitochondrial membrane potential (JC-1) and the activity of caspases 3,8 and 9. Cell viability assays showed that the hexane fraction of the methanol extract of the plant has significant effects against cancer lines RAW 264.7 (IC50 = 52.08 +/- 1.06 mu g/mL) and HeLa (IC50 = 46.77 +/- 1.09 mu g/mL), the residual fraction showed a selective effect on cell lines M12.A(k).C3.F6 (IC50 = 59.90 +/- 1.05 mu g/mL), RAW 264.7 (IC50 = 58.93 +/- 1.26 mu g/mL) and HeLa (IC50 = 50.11 +/- 1.135 mu g/mL) compared to the control cell line L929 (IC50 = 100.00 +/- 1.09 mu g/mL). The chemical characterization of the active fractions allowed the identification of p-sitosterol and stigmasterol in hexane fraction and some phenolic acids, proanthocyanidins and flavonoids in the residual fraction. The methanol extract and hexane fraction reduces mitochondrial membrane potential significantly and activates caspases 3, 8 and 9. Because of the antiproliferative activity observed, our results provide a rational basis for the use of extracts of A. californica in treating various types of cancer in traditional medicine from Mexico. The extracts induce apoptosis via activation of caspases. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Polyclonal lymphocyte stimulation is one of the immunomodulatory mechanisms induced by arthritogenic pathogens. In this study we examined the polyclonal activation potential of a virulent strain of Y. enterocolitica serotype O:8 (WA 2707+) and its plasmidless isogenic pair (WA 2707-). SPF Swiss mice were infected intragastrically and spleen cells were obtained on days 7, 14, 21, 28, 35 and 42 after infection. The number of cells secreting nonspecific immunoglobulins of IgG, IgM and IgA isotypes was determined by the ELISPOT technique. The presence of serum-specific antibodies was investigated by ELISA and the presence of autoantibodies by dot-blot assay. Although the patterns of infection of the two bacterial strains were almost the same, only the animals infected with the virulent strain presented clinical anomalies. Neither arthritic nor inflammatory signs were observed in the joints of the infected animals. The greatest activation observed was that of the nonspecific IgM-secreting cells, and their peak of secretion occurred between the 28th and the 42nd day after infection, for both strains of Y. enterocolitica O:8. Only the animals infected with the virulent strain (WA 2707+) produced IgG-specific antibodies in the serum, from the 28th day after infection. The serum of animals infected with either strain showed reactivity to all the autologous constituents tested, mainly on the 28th and 42nd day after infection. It was concluded that infection of mice with either the virulent strain of Y. enterocolitica O:8 or with its plasmidless isogenic pair resulted in the polyclonal activation of the splenic B lymphocytes including some autoreactive clones.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Trypanosoma cruzi comprises a pool of populations which are genetically diverse in terms of DNA content, growth and infectivity. Inter- and intra-strain karyotype heterogeneities have been reported, suggesting that chromosomal rearrangements occurred during the evolution of this parasite. Clone D11 is a single-cell-derived clone of the T. cruzi G strain selected by the minimal dilution method and by infecting Vero cells with metacyclic trypomastigotes. Here we report that the karyotype of clone D11 differs from that of the G strain in both number and size of chromosomal bands. Large chromosomal rearrangement was observed in the chromosomes carrying the tubulin loci. However, most of the chromosome length polymorphisms were of small amplitude, and the absence of one band in clone D11 in relation to its reference position in the G strain could be correlated to the presence of a novel band migrating above or below this position. Despite the presence of chromosomal polymorphism, large syntenic groups were conserved between the isolates. The appearance of new chromosomal bands in clone D11 could be explained by chromosome fusion followed by a chromosome break or interchromosomal exchange of large DNA segments. Our results also suggest that telomeric regions are involved in this process. The variant represented by clone D11 could have been induced by the stress of the cloning procedure or could, as has been suggested for Leishmania infantum, have emerged from a multiclonal, mosaic parasite population submitted to frequent DNA amplification/deletion events, leading to a 'mosaic' structure with different individuals having differently sized versions of the same chromosomes. If this is the case, the variant represented by clone D11 would be better adapted to survive the stress induced by cloning, which includes intracellular development in the mammalian cell. Karyotype polymorphism could be part of the T. cruzi arsenal for responding to environmental pressure. © 2013 Lima et al.
Resumo:
Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. Furthermore, there is a search for compounds with estrogenic activity that can replace estrogen in hormone replacement therapy during menopause, without the undesirable effects of estrogen, such as the elevation of breast cancer occurrence. Thus, the principal objective of this study was to assess the estrogenic activity of flavonoids with different hydroxylation patterns: quercetin, kaempferol, luteolin, fisetin, chrysin, galangin, flavone, 3-hydroxyflavone, 5-hydroxyflavone and 7-hydroxyflavone via two different in vitro assays, the recombinant yeast assay (RYA) and the MCF-7 proliferation assay (E-screen), since the most potent phytoestrogens are members of the flavonoid family. In these assays, kaempferol was the only compound that showed ERα-dependent transcriptional activation activity by RYA, showing 6.74±1.7 nM EEQ, besides acting as a full agonist for the stimulation of proliferation of MCF-7/BUS cells. The other compounds did not show detectable levels of interaction with ER under the conditions used in the RYA. However, in the E-screen assay, compounds such as galangin, luteolin and fisetin also stimulated the proliferation of MCF-7/BUS cells, acting as partial agonists. In the evaluation of antiestrogenicity, the compounds quercetin, chrysin and 3-hydroxyflavone significantly inhibited the cell proliferation induced by 17-β-estradiol in the E-screen assay, indicating that these compounds may act as estrogen receptor antagonists. Overall, it became clear in the assay results that the estrogenic activity of flavonoids was affected by small structural differences such as the number of hydroxyl groups, especially those on the B ring of the flavonoid. © 2013 Resende et al.
Resumo:
Paracoccidioides brasiliensis (Pb) yeast cells can enter mammalian cells and probably manipulate the host cell environment to favor their own growth and survival. We studied the uptake of strain Pb 18 into A549 lung and Vero epithelial cells, with an emphasis on the repercussions in the cytoskeleton and the apoptosis of host cells. Cytoskeleton components of the host cells, such as actin and tubulin, were involved in the P. brasiliensis invasion process. Cytochalasin D and colchicine treatment substantially reduced invasion, indicating the functional participation of microfilaments (MFs) and microtubules (MTs) in this mechanism. Cytokeratin could also play a role in the P. brasiliensis interaction with the host. Gp43 was recognized by anti-actin and anti-cytokeratin antibodies, but not by anti-tubulin. The apoptosis induced by this fungus in infected epithelial cells was demonstrated by various techniques: TUNEL, DNA fragmentation and Bak and Bcl-2 immunocytochemical expression. DNA fragmentation was observed in infected cells but not in uninfected ones, by both TUNEL and gel electrophoresis methods. Moreover, Bcl-2 and Bak did not show any differences until 24 h after infection of cells, suggesting a competitive mechanism that allows persistence of infection. Overexpression of Bak was observed after 48 h, indicating the loss of competition between death and survival signals. In conclusion, the mechanisms of invasion of host cells, persistence within them, and the subsequent induction of apoptosis of such cells may explain the efficient dissemination of P. brasiliensis. (C) 2004 Published by Elsevier SAS.
Pkc1 acts through Zds1 and Gic1 to suppress growth and cell polarity defects of a yeast eIF5A mutant
Resumo:
eIF5A is a highly conserved putative eukaryotic translation initiation factor that has been implicated in translation initiation, nucleocytoplasmic transport, mRNA decay, and cell proliferation, but with no precise function assigned so far. We have previously shown that high-copy PKCI suppresses the phenotype of tif51A-1, a temperature-sensitive mutant of eIF5A in S. cerevisiae. Here, in an attempt to further understand how Pkc1 functionally interacts with eIF-5A, it was determined that PKCI suppression of tif51A-1 is independent of the cell integrity MAP kinase cascade. Furthermore, two new suppressor genes, ZDS1 and GIC1, were identified. We demonstrated that ZDS1 and ZDS2 are necessary for PKC1, but not for GIC1 suppression. Moreover, high-copy GIC1 also suppresses the growth defect of a PKCI mutant (stt1), suggesting the existence of a Pkc1-Zds1-Gic1 pathway. Consistent with the function of Gic1 in actin organization, the tif51A-1 strain shows an actin polarity defect that is partially recovered by overexpression of Pkc1 and Zds1 as well as Gic1. Additionally, PCL1 and BNI1, important regulators of yeast cell polarity, also suppress tif51A-1 temperature sensitiviiy Taken together, these data strongly Support the correlated involvement of Pkc1 and eIF5A in establishing actin polarity, which is essential for bud formation and G1/S transition in S. cerevisiae.
Resumo:
We imaged pores on the surface of the cell wall of three different industrial strains of Saccharomyces cerevisiae using atomic force microscopy. The pores could be enlarged using 10 mM diamide, an SH residue oxidant that attacks surface proteins. We found that two strains showed signs of oxidative damage via changes in density and diameter of the surface pores. We found that the German strain was resistant to diamide induced oxidative damage, even when the concentration of the oxidant was increased to 50 mM. The normal pore size found on the cell walls of American strains had diameters of about 200nm. Under conditions of oxidative stress the diameters changed to 400nm.This method may prove to be a useful rapid screening process (45-60 min) to determine which strains are oxidative resistant, as well as being able to screen for groups of yeast that are sensitive to oxidative stress. This rapid screening tool may have direct applications in molecular biology (transference of the genes to inside of living cells) and biotechnology (biotransformations reactions to produce chiral synthons in organic chemistry.
Resumo:
The population dynamics in the enteric connective tissues of eosinophils, mucosal mast cells (MMC), and in the mucosal epithelium of goblet cells were examined morphometrically in fixed ileal tissue of outbred Sprague Dawley rats during the first 32 days of infection with the tapeworm Hymenolepis diminuta. MMC and eosinophils were present in the lamina propria and submucosa; however, only eosinophils were also present in the muscularis externa. Eosinophilic infiltrate was first observed in the lamina propria at 15 days postinfection (dpi) and the numbers of eosinophils remained elevated through 32 dpi. Initial mucosal mastocytosis was detected on 6 dpi and MC numbers continued to rise over the study period without reaching a plateau. Goblet cell hyperplasia occurred only at 32 dpi. In contrast to some intestinal nematode infections where these same 3 cell types are associated with the host's expulsion responses, H. diminuta is not lost by a rapid host response in the outbred Sprague Dawley rat strain used in these experiments. We suggest that either the induction of hyperplasia of these host effector cells in ileum tissue during H. diminuta infection is not capable of triggering parasite rejection mechanisms, or the function of the induced hyperplasia is necessary for some as yet unassociated physiological or tissue architecture change in the host's intestine.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The extreme use of ethanol causes metabolic and pathologic changes in testes and urogenital system in different animal species. The enzyme alcohol dehydrogenase (ADH) catalyses the conversion of ethanol into carcinogenic metabolite acetaldehyde which is partly excreted into the urine. However, papers relating the chronic ethanol consumption to the urethral morphology are unknown. This work evaluates the toxic effect of the chronic ethanol ingestion on the urethral epithelium of UChA and UChB rats. Conventional techniques of histology, histochemistry, immunohistochemistry and ultrastructural analysis were used. The analysis showed the presence of lipid drops and intercellular spaces in the epithelial cells in the urethra of UChA and UChB rats compared to control rats. Urethral neuroendocrine cell were observed and characterized for presenting vesicles containing electron-dense granules associated with nervous fibers. We conclude that the chronic consumption of ethanol induces the presence lipid drops in the epithelial cells of the urethra of UChA and UChB rats. The NE cells of the urethra of UChA and UChB rats did not show alterations under chronic effect of the ethanol. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)