32 resultados para cadmium telluride magic-sized clusters 2D structures colloidal nanocrystals


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have pointed Out that. zinc-based particles obtained from zinc acetate sol-gel route is a mixture of quantum-sized ZnO nanoparticles, zinc acetate, and zinc hydroxide double salt (Zn-HDS). Aiming the knowledge of the mechanisms involved in the formation of ZnO and Zn-HDS phases, the thermohydrolysis of ethanolic zinc acetate solutions induced by lithium hydroxide ([LiOH]/[Zn2+] = 0.1) or water ([H2O]/[Zn2+] = 0.05) addition was investigated at different isothermal temperatures (40, 50, 60 and 70 degrees C) by in situ measurements of turbidity, UV-vis absorption spectra and extended X-ray absorption fine structures (EXAFS). Only the growth of ZnO nanoparticles was observed in sol prepared with LiOH, while a two-step process was observed in that prepared with water addition, leading the fast growth of Zn-HDS and the formation of ZnO nanoparticles at advanced stage. A mechanism of dissolution/reprecipitation governed by the water/ethanol proportion is proposed to account for relative amount of ZnO. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To obtain SnO2 films to be used for surface protection of fluoride glasses, a non-aqueous sol-gel route for the preparation was developed. An ethanolic SnO2 colloidal suspension was prepared by thermohydrolysis of SnCl4 solution at 70 degreesC. By using this procedure, redispersable powders with nanometer sized particles were obtained. Films were obtained by dip coating on glass and mica substrates. The structures of the ethanolic precursor suspension and films were compared to those of similar samples prepared by the classical aqueous sol-gel route. Comparative analyses performed by photon correlation spectroscopy demonstrated that the powders obtained by freeze-drying are fully redispersable either in aqueous or in alcoholic solutions at pH greater than or equal to 8. As prepared sols and redispersed colloidal suspensions have hydrodynamic radius distribution (2-14 nm) with an average size close to 7 nm. The variations in film structures with firing temperature were investigated by small-angle X-ray scattering and X-ray reflectometry. The experimental results show that the films have a two level porous structure composed of agglomerates of primary colloidal particles. The sintering of the primary particles leads to the densification of agglomerates and to the formation of inter-agglomerate spatially correlated pores. The volume fraction of intra-agglomerate pores is reduced from approximate to 50% to approximate to 30% by the precipitation of precursor salts partially hydrolyzed in ethanolic solution. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The capacity of goethite for Cd-II substitution has been explored in a series of synthetic samples prepared from Fe-III and Cd-II nitrate solutions aged 21 days in alkaline media. The total metal content ([ Fe] + [ Cd]) was 0.071 M in all preparations. The samples have been characterized by chemical and X-ray diffraction analysis; the morphology of the solids is described. The cell parameters for all samples were obtained by the Rietveld fits to the X-ray diffraction data. Refined structures show that for samples prepared at the final molar ratio mu(Cd)less than or equal to5.50 (expressed as mu(Cd) = 100X[Cd]/[Cd] + [Fe]), a (Cd, Fe)-goethite is the only crystalline product. In these samples, the unit cell parameters increased as a function of Cd concentration, indicating Cd incorporation in the structural frame. At the preparative ratio, mu(Cd)=7.03, the incorporation of Cd in the goethite structure is drastically reduced and a probable Cd-substituted hematite is formed together with the Fe,Cd-goethite. (C) 2003 International Centre for Diffraction Data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The simultaneous formation of nanometer sized zinc oxide (ZnO), and acetate zinc hydroxide double salt (Zn-HDS) is described. These phases, obtained using the sol-gel synthesis route based on zinc acetate salt in alcoholic media, were identified by direct characterization of the reaction products in solution using complementary techniques: nephelometry, in situ Small-Angle X-ray Scattering (SAXS), UV-Vis spectroscopy and Extended X-ray Absorption Fine Structures (EXAFS). In particular, the hydrolytic pathway of ethanolic zinc acetate precursor solutions promoted by addition of water with the molar ratio N = [H2O]/[Zn2+] = 0.05 was investigated in this paper. The aim was to understand the formation mechanism of ZnO colloidal suspension and to reveal the factors responsible for the formation of Zn-HDS in the final precipitates. The growth mechanism of ZnO nanoparticles is based on primary particle (radius approximate to 1.5 nm) rotation inside the primary aggregate (radius < 3.5 nm) giving rise to an epitaxial attachment of particles and then subsequent coalescence. The growth of second ZnO aggregates is not associated with the Otswald ripening, and could be associated with changes in equilibrium between solute species induced by the superficial etching of Zn-HDS particles at the advanced stage of kinetic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anodic aluminium oxide (AAO) films exhibiting a homogeneous morphology of parallel pores perpendicular to the surface were prepared in a two-step anodization process and filled with copper by electrochemical deposition. The optimum growth conditions for the formation of freestanding AAO films with hexagonal compact array of cylindrical pores were studied by field emission scanning electron microscopy and small angle X-ray scattering. The results show well-defined periodic structures with uniform pores size distribution for films with pore diameters between 40 and 70 nm prepared using different voltages and temperatures during the second anodization step. X-ray photoelectron spectroscopy and X-ray diffraction analysis of AAO films filled with copper show the formation of nanowires with high structural order, exhibiting a preferential crystalline orientation along the (2 2 0) axis and only small fraction of copper oxides. The best results for textured Cu nanowires were obtained at a reduction potential of -300 mV. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent SnO2 gels were obtained from SnCl4 aqueous solution. The sol formation from tin oxihydroxy peptization in different concentrations and by electrolyte addition in solution was measured. It was verified that the residual presence of chloride ions compromises the colloidal system stability. The sol-gel transition was investigated as a function of the quantity of solid particles in the aqueous environment and of aging time at 60°C by infrared spectroscopy and rheological measurements. The transition from plastic to pseudoplastic flow observed with the increase in loading suggests that a continuous and three-dimensional network formation is closely related to hydrogen bridges and/or hydrogen clusters, culminating in the gel formation. © 1990.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the effect of the concentration of electrolyte and pH on the kinetics of aggregation and gelation processes of SnO2 colloidal suspensions. Creep, creep-recovery, and oscillatory rheological experiments have been done in situ during aggregation and gelation. A phenomenological description of the structure of the colloidal system is given from the time evolution of rheological parameters. The dependence of the equilibrium steady-state shear compliance on the terminal region of clusters or aggregates seems to be a way to determine the beginning of interconnection of aggregates and the gel point. We propose that at this point the equilibrium steady-state compliance is a minimum. The steady-state viscosity determined from creep experiment can be fit with a power law with the extent of the transformation, giving critical exponent s = 0.7 ± 0.1. The value of the critical exponent Δ = 0.78 ± 0.05 was determined from oscillatory experiment. These results indicate that gelation of SnO2 colloidal suspension exhibits the typical scale expected from the scalar percolation theory. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: The aim of this study was to assess the effect of different silver nanoparticles (SN) concentrations on the matrix composition and structure of Candida albicans and Candida glabrata biofilms. Methods and Results: Candida biofilms were developed in 6-well microtiter plates during 48 h. After, these biofilms were exposed to 13·5 or 54 μg SN ml-1 for 24 h. Then, extracellular matrices were extracted from biofilms and analysed chemically in terms of proteins, carbohydrates and DNA. To investigate the biofilm structure, scanning electron microscopy (SEM) and epifluorescence microscopy were used. SN interfered with the matrix composition of Candida biofilms tested in terms of protein, carbohydrate and DNA, except for the protein content of C. albicans biofilm. By SEM, Candida biofilms treated with SN revealed structural differences, when compared with the control groups. Further, SN showed a trend of agglomeration within the biofilms. Epifluorescence microscopy images suggest that SN induced damage on cell walls of the Candida isolates tested. Conclusions: In general, irrespective of concentration, SN affected the matrix composition and structure of Candida biofilms and these findings may be related to the mechanisms of biocide action of SN. Significance and Impact of the Study: This study reveals new insights about the behaviour of SN when in contact with Candida biofilms. SN may contribute to the development of therapies to prevent or control Candida infections. © 2012 The Society for Applied Microbiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single crystalline SnO micro-disks, synthesized by a carbothermal reduction process, exhibited a nearly 1000-fold increase in resistance upon exposure to 100 ppm of NO2 without addition of catalysts or dopants nor the existence of nano-sized dimensions. Moreover, the SnO displayed a greater than 100-fold selectivity to NO2 over potential interferents including CO, H2 and CH4. The high sensor signal and exceptional selectivity for this novel sensor material are attributed to the existence of a high density of active lone pair electrons on the exposed (0 0 1) planes of the single crystalline SnO disks. This, thereby, identifies new means, not utilizing nano-dimensions, to achieve high gas sensitivity. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC