80 resultados para axial rotation
Resumo:
The purpose of this Study was to evaluate Soft tissue response to rnaxillo-mandibular counter-clockwise rotation, with TMJ reconstruction and mandibular advancement using TMJ Concepts (R) total joint prostheses, and maxillary osteotomies in 44 females. All patients were operated at Baylor University Medical Center, Dallas TX, USA, by one Surgeon (Wolford). Eighteen patients had genioplasties with either porous block hydroxyapatite or hard tissue replacement implants (Group 2) 26 had no genioplasty (Group 1). Surgically, the maxilla moved forward and upward by counter-clockwise maxillo-mandibular rotation with greater horizontal movement in Group 2. Vertically, both groups showed diversity of maxillo-mandibular mean movement. Group I showed a consistent 1:0.97 ratio of hard to soft tissue advancement at pogonion; Group 2 results were less consistent, with ratios between 1:0.84 and 1:1.02. Horizontal changes in upper lip morphology after maxillary advancement/impaction, VY closure, and alar base cinch sutures showed greater movement in both groups, than observed in hard tissue. Counter-clockwise rotation of the maxillo-mandibular complex using TMJ Concepts total joint prostheses resulted in similar soft tissue response as previously reported for traditional maxillo-mandibular advancement without counter-clockwise rotation of the occlusal plane. The association of chin implants, in the present sample, showed higher variability of soft tissue response.
Resumo:
47 end-stage TMJ patients with high occlusal plane angulation, treated with TMJ custom-fitted total joint prostheses and simultaneous maxillo-mandibular counter-clockwise rotation were evaluated for pain and dysfunction presurgery (T1) and at the longest follow-up (T2). Patients subjectively rated their facial pain/headache, TMJ pain, jaw function, diet and disability. Objective functional changes were determined by measuring maximum interincisal opening (MIO) and laterotrusive movements. Patients were divided according to the number of previous failed TMJ surgeries: Group 1 (0-1), Group 2 (2 or more). Significant subjective pain and dysfunction improvements (37-52%) were observed (<0.001). MIO increased 14% but lateral excursion decreased 60%. The groups presented similar absolute changes, but Group 2 showed more dysfunction at T1 and T2. For patients who did not receive fat grafts around the prostheses and had previous failure of proplast/teflon and or silastic TMJ implants, more than half required surgery for TMJ debridement and removal of foreign body giant cell reaction and heterotopic bone formation. End-stage TMJ patients can be treated in one operation with TMJ custom-made total joint prostheses and maxillo-mandibular counter-clockwise rotation, for correction of dentofacial deformity and improvement in pain and TMJ dysfunction; Group 1 patients had better results than Group 2 patients.
Resumo:
The purpose of this study was to evaluate the anatomical changes and stability of the oropharyngeal airway and head Posture following TMJ reconstruction and mandibular advancement with TMJ Concepts custom-made total joint prostheses and maxillary osteotomies with counter-clockwise rotation of the maxillo-mandibular complex. All patients were operated at Baylor University Medical Center, Dallas TX, USA, by one surgeon (Wolford). The lateral cephalograms of 47 patients were analyzed to determine surgical and post-surgical changes of the oropharyngeal airway, hyoid bone and head posture. Surgery increased the narrowest retroglossal airway space 4.9 mm. Head Posture showed flexure immediately after surgery (-5.6 +/- 6.7 degrees) and extension long-term post surgery (1.8 +/- 6.7 degrees); cervical curvature showed no significant change. Surgery increased the distances between the third cervical vertebrae and the menton 11.7 +/- 9.1 mm and the third cervical vertebrae and hyoid 3.2 +/- 3.9 mm, and remained stable. The distance from the hyoid to the mandibular plane decreased during surgery (-3.8 +/- 5.8 mm) and after surgery (-2.5 +/- 5.2 mm), Maxillo-mandibular advancement with counter-clockwise rotation and TMJ reconstruction with total joint prostheses produced immediate increase in oropharyngeal airway dimension, which was influenced by long-term changes in head posture but remained stable over the follow-up period.
Resumo:
Objectives: The present study used strain gauge analysis to perform an in vitro evaluation of the effect of axial loading on 3 elements of implant-supported partial fixed prostheses, varying the type of prosthetic cylinder and the loading points. Material and methods: Three internal hexagon implants were linearly embedded in a polyurethane block. Microunit abutments were connected to the implants applying a torque of 20 Ncm, and prefabricated Co-Cr cylinders and plastic prosthetic cylinders were screwed onto the abutments, which received standard patterns cast in Co-Cr alloy (n=5). Four strain gauges (SG) were bonded onto the surface of the block tangentially to the implants, SG 01 mesially to implant 1, SG 02 and SG 03 mesially and distally to implant 2, respectively, and SG 04 distally to implant 3. Each metallic structure was screwed onto the abutments with a 10 Ncm torque and an axial load of 30 kg was applied at five predetermined points (A, B, C, D, E). The data obtained from the strain gauge analyses were analyzed statistically by RM ANOVA and Tukey's test, with a level of significance of p<0.05. Results: There was a significant difference for the loading point (p=0.0001), with point B generating the smallest microdeformation (239.49 mu epsilon) and point D the highest (442.77 mu epsilon). No significant difference was found for the cylinder type (p=0.748). Conclusions: It was concluded that the type of cylinder did not affect in the magnitude of microdeformation, but the axial loading location influenced this magnitude.
Resumo:
Purpose: The aim of this in vitro study was to quantify strain development during axial and nonaxial loading using strain gauge analysis for three-element implant-supported FPDs, varying the arrangement of implants: straight line (L) and offset (O). Materials and Methods: Three Morse taper implants arranged in a straight line and three implants arranged in an offset configuration were inserted into two polyurethane blocks. Microunit abutments were screwed onto the implants, applying a 20 Ncm torque. Plastic copings were screwed onto the abutments, which received standard wax patterns cast in Co-Cr alloy (n = 10). Four strain gauges were bonded onto the surface of each block tangential to the implants. The occlusal screws of the superstructure were tightened onto microunit abutments using 10 Ncm and then axial and nonaxial loading of 30 Kg was applied for 10 seconds on the center of each implant and at 1 and 2 mm from the implants, totaling nine load application points. The microdeformations determined at the nine points were recorded by four strain gauges, and the same procedure was performed for all of the frameworks. Three loadings were made per load application point. The magnitude of microstrain on each strain gauge was recorded in units of microstrain (mu). The data were analyzed statistically by two-way ANOVA and Tukey's test (p < 0.05). Results: The configuration factor was statistically significant (p= 0.0004), but the load factor (p= 0.2420) and the interaction between the two factors were not significant (p= 0.5494). Tukey's test revealed differences between axial offset (mu) (183.2 +/- 93.64) and axial straight line (285.3 +/- 61.04) and differences between nonaxial 1 mm offset (201.0 +/- 50.24) and nonaxial 1 mm straight line (315.8 +/- 59.28). Conclusion: There was evidence that offset placement is capable of reducing the strain around an implant. In addition, the type of loading, axial force or nonaxial, did not have an influence until 2 mm.
Resumo:
The behavior of the non-perturbative parts of the isovector-vector and isovector and isosinglet axial-vector correlators at Euclidean momenta is studied in the framework of a covariant chiral quark model with non-local quark-quark interactions. The gauge covariance is ensured with the help of the P-exponents, with the corresponding modification of the quark-current interaction vertices taken into account. The low- and high-momentum behavior of the correlators is compared with the chiral perturbation theory and with the QCD operator product expansion, respectively. The V-A combination of the correlators obtained in the model reproduces quantitatively the ALEPH and OPAL data on hadronic tau decays, transformed into the Euclidean domain via dispersion relations. The predictions for the electromagnetic pi(+/-) - pi(0) mass difference and for the pion electric polarizability are also in agreement with the experimental values. The topological susceptibility of the vacuum is evaluated as a function of the momentum, and its first moment is predicted to be chi'(0) approximate to (50 MeV)(2). In addition, the fulfillment of the Crewther theorem is demonstrated.
Resumo:
We consider vortices in the nonlocal two-dimensional Gross-Pitaevskii equation with the interaction potential having Lorentz-shaped dependence on the relative momentum. It is shown that in the Fourier series expansion with respect to the polar angle, the unstable modes of the axial n-fold vortex have orbital numbers l satisfying 0 < \l\ < 2\n\, as in the local model. Numerical simulations show that nonlocality slightly decreases the threshold rotation frequency above which the nonvortex state ceases to be the global energy minimum and decreases the frequency of the anomalous mode of the 1-vortex. In the case of higher axial vortices, nonlocality leads to instability against splitting with the creation of antivortices and gives rise to additional anomalous modes with higher orbital numbers. Despite new instability channels with the creation of antivortices, for a stationary solution comprised of vortices and antivortices there always exists another vortex solution, composed solely of vortices, with the same total vorticity but with a lower energy.
Resumo:
We show that the Einstein-Hilbert, the Einstein-Palatini, and the Holst actions can be derived from the Quadratic Spinor Lagrangian (QSL), when the three classes of Dirac spinor fields, under Lounesto spinor field classification, are considered. To each one of these classes, there corresponds an unique kind of action for a covariant gravity theory. In other words, it is shown to exist a one-to-one correspondence between the three classes of non-equivalent solutions of the Dirac equation, and Einstein-Hilbert, Einstein-Palatini, and Holst actions. Furthermore, it arises naturally, from Lounesto spinor field classification, that any other class of spinor field-Weyl, Majorana, flagpole, or flag-dipole spinor fields-yields a trivial (zero) QSL, up to a boundary term. To investigate this boundary term, we do not impose any constraint on the Dirac spinor field, and consequently we obtain new terms in the boundary component of the QSL. In the particular case of a teleparallel connection, an axial torsion one-form current density is obtained. New terms are also obtained in the corresponding Hamiltonian formalism. We then discuss how these new terms could shed new light on more general investigations.
Resumo:
A general construction of affine nonabelian (NA)-Toda models in terms of the axial and vector gauged two loop WZNW model is discussed. They represent integrable perturbations of the conformal sigma -models (with tachyons included) describing (charged) black hole type string backgrounds. We study the off-critical T-duality between certain families of axial and vector type integrable models for the case of affine NA-Toda theories with one global U(1) symmetry. In particular we find the Lie algebraic condition defining a subclass of T-selfdual torsionless NA-Toda models and their zero curvature representation. (C) 2001 Academic Press.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Estudaram-se as alterações tonométricas, paquimétricas e de comprimento axial em cães com glaucoma submetidos à ablação uveal intravítrea. Foram avaliados 13 olhos irreversivelmente cegos de cães que apresentavam glaucoma crônico unilateral, nos quais realizou-se a ablação uveal intra-vítrea, por meio de injeção na câmara vítrea de 0,5ml de sulfato de gentamicina (40mg/ml) associado a 0,3ml de fosfato de dexametasona (4mg/ml). As mensurações da pressão intra-ocular (Po), espessura corneana e eixo axial com tonometria de aplanação, paquimetria ultra-sônica e ultra-sonografias modos A e B foram realizadas no dia da ablação (M0) e após uma (M1), quatro (M4), oito (M8), 12 (M12), 24 (M24) e 48 semanas (M48). A Po diminuiu significativamente em todos os momentos em relação ao M0, com aumento da espessura corneana ao longo do experimento. Nas avaliações ultra-sonográficas notou-se diminuição significativa do bulbo ocular a partir de M4, com medidas ultra-sonográficas modo A significativamente maiores que as do modo B. O procedimento foi efetivo na redução da Po e na diminuição do eixo axial, demonstrando ser viável no controle do glaucoma crônico em olhos irreversivelmente cegos, e ser uma alternativa à enucleação e inserção de prótese ocular.
Resumo:
O presente trabalho teve por objetivo avaliar as perdas na colheita de soja em função da idade, velocidade de trabalho, sistema de trilha (axial e radial) e condição de propriedade das colhedoras (própria ou alugada), nas regiões do Triângulo Mineiro e Alto Paranaíba - MG, durante a colheita de soja da safra 2002-2003. A velocidade de trabalho das colhedoras e a rotação do cilindro de trilha também foram estudadas, à exceção de quando avaliadas como variável-função. Os resultados obtidos permitiram concluir que as perdas de grãos independem da velocidade das colhedoras e que as colhedoras com até cinco anos, independentemente da sua taxa de utilização anual, tiveram menores perdas do que as colhedoras com mais de seis anos. As colhedoras próprias apresentaram menores perdas comparadas com as alugadas, e as máquinas com sistema de trilha axial apresentaram menores perdas do que aquelas com sistema de trilha radial.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Soil and subsoil aluminium toxicity has been one of the main limiting factors for soybean and wheat yields in tropical soils. Usually liming is the most effective way to deal with soil acidity and Al toxicity, but in no-till systems the soil is not disturbed making it impossible to incorporate lime in the arable layer, and lime has been usually applied on the soil surface. In this paper soybean and wheat responses to lime applied on the soil surface and/or incorporated in the soil arable layer were evaluated during the transition from conventional tillage to a no-till system. The experiment was conducted for 3 years in Parana, Brazil, using a wheat-soybean rotation. Lime rates ranging from 0.0 to 9.0 t ha(-1) were incorporated down to 20 cm and 4.5 t ha(-1) were spread or not on the soil surface. Soil samples were taken down to 60 cm, 39 months after the first lime application. Soil chemical characteristics were affected by lime application down to 60 cm deep in the profile. Soybean responded to lime irrespective of application method, but the highest accumulated yield was obtained when lime was incorporated into the arable layer. For wheat, the more sensitive the cultivar, the greater was the response to lime. During the introduction of a no-till system, lime must be incorporated into the arable layer when the wheat cultivar is Al-sensitive. (C) 2007 Elsevier B.V. All rights reserved.