24 resultados para Training Evaluation
Resumo:
Background: Hypertension can be generated by a great number of mechanisms including elevated uric acid (UA) that contribute to the anion superoxide production. However, physical exercise is recommended to prevent and/or control high blood pressure (BP). The purpose of this study was to investigate the relationship between BP and UA and whether this relationship may be mediated by the functional fitness index.Methods: All participants (n = 123) performed the following tests: indirect maximal oxygen uptake (VO2max), AAHPERD Functional Fitness Battery Test to determine the general fitness functional index (GFFI), systolic and diastolic blood pressure (SBP and DBP), body mass index (BMI) and blood sample collection to evaluate the total-cholesterol (CHOL), LDL-cholesterol (LDL-c), HDL-cholesterol (HDL-c), triglycerides (TG), uric acid (UA), nitrite (NO2) and thiobarbituric acid reactive substances (T-BARS). After the physical, hemodynamic and metabolic evaluations, all participants were allocated into three groups according to their GFFI: G1 (regular), G2 (good) and G3 (very good).Results: Baseline blood pressure was higher in G1 when compared to G3 (+12% and +11%, for SBP and DBP, respectively, p<0.05) and the subjects who had higher values of BP also presented higher values of UA. Although UA was not different among GFFI groups, it presented a significant correlation with GFFI and VO2max. Also, nitrite concentration was elevated in G3 compared to G1 (140±29 μM vs 111± 29 μM, for G3 and G1, respectively, p<0.0001). As far as the lipid profile, participants in G3 presented better values of CHOL and TG when compared to those in G1.Conclusions: Taking together the findings that subjects with higher BP had elevated values of UA and lower values of nitrite, it can be suggested that the relationship between blood pressure and the oxidative stress produced by acid uric may be mediated by training status. © 2013 Trapé et al.; licensee BioMed Central Ltd.
Resumo:
PURPOSE: To propose a simulation-based ultrasound-guided central venous cannulation skills' training program, during residency.METHODS: This study describes the strategies for learning the ultrasound-guided central venous cannulation on low-fidelity bench models. The preparation of bench models, educational goals, processes of skill acquisition, feedback and evaluation methods were also outlined. The training program was based on key references to the subject.RESULTS: It was formulated a simulation-based ultrasound-guided central venous cannulation teaching program on low-fidelity bench models.CONCLUSION: A simulation-based inexpensive, low-stress, no-risk learning program on low-fidelity bench models was proposed to facilitate acquisition of ultrasound-guided central venous cannulation skills by residents-in-training before exposure to the living patient.
Resumo:
High intensity systematic physical training leads to myocardial morphophysiological adaptations. The goal of this study was to investigate if differences in training were correlated with differences in cardiac sympathetic activity.58 males (19-47 years), were divided into three groups: strength group (SG), (20 bodybuilders), endurance group (EG), (20 endurance athletes), and a control group (CG) comprising 18 healthy non-athletes. Cardiac sympathetic innervation was assessed by planar myocardial I-123-metaiodobenzylguanidine scintigraphy using the early and late heart to mediastinal (H/M) ratio, and washout rate (WR).Left ventricular mass index was significantly higher both in SG (P < .001) and EG (P = .001) compared to CG without a statistical significant difference between SG and EG (P = .417). The relative wall thickness was significantly higher in SG compared to CG (P < .001). Both left ventricular ejection fraction and the peak filling rate showed no significant difference between the groups. Resting heart rate was significantly lower in EG compared to CG (P = .006) and SG (P = .002). The late H/M ratio in CG was significantly higher compared to the late H/M for SG (P = .003) and EG (P = .004). However, WR showed no difference between the groups. There was no significant correlation between the parameters of myocardial sympathetic innervation and parameters of left ventricular function.Strength training resulted in a significant increase in cardiac dimensions. Both strength and endurance training seem to cause a reduction in myocardial sympathetic drive. However, myocardial morphological and functional adaptations to training were not correlated with myocardial sympathetic activity.
Resumo:
Background. The chronic obstructive pulmonary disease (COPD) is associated with the strength and resistance decreasing in addition to the dysfunction on autonomic nervous system (ANS). The aerobic training isolated or in association with the resistance training showed evidence of beneficial effects on an autonomic modulation of COPD; however, there are no studies addressing the effect of isolated resistance training.Aims. This study aims at investigating the influence of resistance training on an autonomic modulation through heart rate variability (HRV), functional capacity and muscle strength in individuals with COPD.Design. Clinical series study.Setting. Outpatients.Population. The study involved 13 individuals with COPD.Methods. The experimental protocol was composed by an initial and final evaluation that consisted in autonomic evaluations (HRV), cardiopulmonary functional capacity evaluation (6-minute walk test) and strength evaluation (dynamometry) in addition by the resistance training performed by 24 sessions lasted 60 minutes each one and on a frequency of three times a week. The intensity was determined initially with 60% of one maximum repetition and was progressively increased in each five sessions until 80%.Results. The HRV temporal and spectral indexes analysis demonstrates improvement of autonomic modulation, with significant statistical increases to sympathetic and parasympathetic components of ANS representing by SDNN, LF and HF. In addition, it was observed significant statistical increases to shoulder abduction and. knee flexion strength and functional capacity.Conclusion. The exclusive resistance training performed was able to positively influence the autonomic modulation; in addition it promoted benefits on cardiorespiratory functional capacity and strength benefits in individuals with COPD.Clinical Rehabilitation Impact. This study could contribute to clinical and professionals researchers that act with COPD, even though the resistance component of pulmonary rehabilitation presents consensual benefits on several healthy indicators parameters. There is no evidence about the effects on HRV before. Moreover, this study showed, on clinical practice, the HRV uses as an ANS activity on sinus node evaluation and highlights further importance on scientific context.
Strength gain through eccentric isotonic training without changes in clinical signs or blood markers
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introduction: Prognostic factors are used in the Intensive Care Unit (ICU) to predict morbidity and mortality , especially in patients on mechanical ventilation (MV ) . Training protocols are used in MV patients with the aim of promoting the success of the weaning process. Objective: To assess which variables determine the outcome of patients undergoing mechanical ventilation and compare the effects of two protocols for weaning. Method: Patients under MV for more than 48 hours had collected the following information: sex, age , ideal weight, height , Acute Physiology and Chronic Health Evaluation (APACHE II), risk of mortality, Glasgow Coma Scale (GCS) and index Quick and perfunctory (IRRS) breathing. Patients with unsuccessful weaning performed one of weaning protocols: Progressive T - tube or tube - T + Threshold ® IMT. Patients were compared for outcome (death or non- death in the ICU ) and the protocols through the t test or Mann-Whitney test was considered significant when P <0.05. Results: Of 128 patients evaluated 56.25% were men, the mean age was 60.05 ± 17.85 years and 40.62 % patients died, and they had higher APACHE II scores, mortality risk, time VM and IRRS GCS and the lower value (p<0.05). The age, initial and final maximal inspiratory pressure, time of weaning and duration of MV was similar between protocols. Conclusion: The study suggests that the GCS, APACHE II risk of mortality, length of MV and IRRS variables determined the evolution of MV patients in this sample. Not found differences in the variables studied when comparing the two methods of weaning.
Resumo:
Chronic obstructive pulmonary disease (COPD) is associated with autonomic dysfunctions that can be evaluated through heart rate variability (HRV). Resistance training promotes improvement in autonomic modulation; however, studies that evaluate this scenario using geometric indices, which include nonlinear evaluation, thus providing more accurate information for physiological interpretation of HRV, are unknown. This study aimed to investigate the influence of resistance training on autonomic modulation, using geometric indices of HRV, and peripheral muscle strength in individuals with COPD. Fourteen volunteers with COPD were submitted to resistance training consisting of 24 sessions lasting 60 min each, with a frequency of three times a week. The intensity was determined as 60% of one maximum repetition and was progressively increased until 80% for the upper and lower limbs. The HRV and dynamometry were performed at two moments, the beginning and the end of the experimental protocol. Significant increases were observed in the RRtri (4·81 ± 1·60 versus 6·55 ± 2·69, P = 0·033), TINN (65·36 ± 35·49 versus 101·07 ± 63·34, P = 0·028), SD1 (7·48 ± 3·17 versus 11·04 ± 6·45, P = 0·038) and SD2 (22·30 ± 8·56 versus 32·92 ± 18·78, P = 0·022) indices after the resistance training. Visual analysis of the Poincare plot demonstrated greater dispersion beat-to-beat and in the long-term interval between consecutive heart beats. Regarding muscle strength, there was a significant increase in the shoulder abduction and knee flexion. In conclusion, geometric indices of HRV can predict improvement in autonomic modulation after resistance training in individuals with COPD; improvement in peripheral muscle strength in patients with COPD was also observed.
Resumo:
The aim of this study was to verify the effects of running overtraining protocols performed in downhill, uphill, and without inclination on the proteins related to hypertrophy signaling pathway in extensor digitorum longus (EDL) and soleus of C57BL/6 mice. We also performed histological and stereological analyses. Rodents were divided into control (CT; sedentary mice), overtrained by downhill running (OTR/down), overtrained by uphill running (OTR/up), and overtrained by running without inclination (OTR). The incremental load, exhaustive, and grip force tests were used as performance evaluation parameters. 36 h after the grip force test, EDL and soleus were removed and immediately used for immunoblotting analysis or stored at -80°C for histological and stereological analyses. For EDL, OTR/down decreased the protein kinase B (Akt) and tuberous sclerosis protein 2 (TSC2) phosphorylation (p), and increased myostatin, receptor-activated Smads (pSMAD2-3), and insulin receptor substrate-1 (pIRS-1; Ser307/636). OTR/down also presented low and high relative proportions of cytoplasm and connective tissue, respectively. OTR/up increased the mammalian target of rapamycin (pmTOR), 70-kDa ribosomal protein S6 kinase 1 (pS6K1) and pSMAD2-3, and decreased pTSC2. OTR decreased pTSC2 and increased pIRS-1 (Ser636). For soleus, OTR/down increased S6 ribosomal protein (pS6RP) and pSMAD2-3, and decreased pIRS-1 (Ser639). OTR/up decreased pS6K1, pS6RP and pIRS-1 (Ser639), and increased pTSC2 (Ser939), and pSMAD2-3. OTR increased pS6RP, 4E-binding protein-1 (p4E-BP1), pTSC2 (Ser939), and pSMAD2-3, and decreased pIRS-1 (Ser639). In summary, OTR/down inhibited the skeletal muscle hypertrophy with concomitant signs of atrophy in EDL. The effects of OTR/up and OTR depended on the analyzed skeletal muscle type. J. Cell. Physiol. 9999: 1-12, 2015. © 2015 Wiley Periodicals, Inc.
Resumo:
Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq)