30 resultados para SPLICEOSOMAL INTRONS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
Pós-graduação em Biotecnologia - IQ
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
HLA-G has a relevant role in immune response regulation. The overall structure of the HLA-G coding region has been maintained during the evolution process, in which most of its variable sites are synonymous mutations or coincide with introns, preserving major functional HLA-G properties. The HLA-G promoter region is different from the classical class I promoters, mainly because (i) it lacks regulatory responsive elements for IFN-gamma and NF-kappa B, (ii) the proximal promoter region (within 200 bases from the first translated ATG) does not mediate transactivation by the principal HLA class I transactivation mechanisms, and (iii) the presence of identified alternative regulatory elements (heat shock, progesterone and hypoxia-responsive elements) and unidentified responsive elements for IL-10, glucocorticoids, and other transcription factors is evident. At least three variable sites in the 3' untranslated region have been studied that may influence HLA-G expression by modifying mRNA stability or microRNA binding sites, including the 14-base pair insertion/deletion, +3142C/G and +3187A/G polymorphisms. Other polymorphic sites have been described, but there are no functional studies on them. The HLA-G coding region polymorphisms might influence isoform production and at least two null alleles with premature stop codons have been described. We reviewed the structure of the HLA-G promoter region and its implication in transcriptional gene control, the structure of the HLA-G 3' UTR and the major actors of the posttranscriptional gene control, and, finally, the presence of regulatory elements in the coding region.
Resumo:
O evento de splicing alternativo tem como resultado a geração de diversos produtos a partir do precursor do RNA mensageiro de um único gene, sendo o responsável, assim, pelo aumento da variedade de transcritos e proteínas existentes em uma célula. Estima-se que cerca de 90% dos genes humanos estejam sujeitos a este tipo de processamento. O funcionamento adequado do processo de splicing depende do reconhecimento correto dos limites entre trechos intrônicos e exônicos pela maquinaria enzimática, que se dá através do reconhecimento de diversos sinais, como os sítios de splicing 3’ e 5’, o trato de polipirimidina, a seqüência “branch”, e pequenas seqüências presentes em exons e introns, próximas aos sítios de splicing, que promovem ou inibem a inclusão de trechos na fita de RNA madura. É fato comprovado por diversos estudos que mutações nas seqüências sinalizadoras de splicing podem modificar o padrão de processamento de um gene. Acreditase que variações genéticas individuais possam modificar a suceptibilidade a diversas doenças, entre elas o câncer, que trata-se, atualmente, da doença que mais gera óbitos no mundo (13% do total). Recentemente, Sjoblom et al. (2006) e Wood et al. (2007) mapearam mutações não silenciosas encontradas em 1718 genes em linhagens de câncer de mama e colorretal. Neste trabalho, investigamos os efeitos dessas mutações somáticas presentes em câncer no padrão de splicing celular. Para tanto, nos focamos nas 201 mutações encontradas em quatro linhagens de câncer de mama (HCC1954, HCC1599, HCC1143 e HCC2157). A partir dos dados obtidos pela técnica de “Exon Array” (Affymetrix) e do mapeamento das mutações, foi realizada uma seleção dos genes aonde haviam mutações e eventos de splicing alternativos específicos a somente uma das linhagens celular, e cuja distância... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
HLA-E is a non-classical Human Leucocyte Antigen class I gene with immunomodulatory properties. Whereas HLA-E expression usually occurs at low levels, it is widely distributed amongst human tissues, has the ability to bind self and non-self antigens and to interact with NK cells and T lymphocytes, being important for immunosurveillance and also for fighting against infections. HLA-E is usually the most conserved locus among all class I genes. However, most of the previous studies evaluating HLA-E variability sequenced only a few exons or genotyped known polymorphisms. Here we report a strategy to evaluate HLA-E variability by next-generation sequencing (NGS) that might be used to other HLA loci and present the HLA-E haplotype diversity considering the segment encoding the entire HLA-E mRNA (including 5'UTR, introns and the 3'UTR) in two African population samples, Susu from Guinea-Conakry and Lobi from Burkina Faso. Our results indicate that (a) the HLA-E gene is indeed conserved, encoding mainly two different protein molecules; (b) Africans do present several unknown HLA-E alleles presenting synonymous mutations; (c) the HLA-E 3'UTR is quite polymorphic and (d) haplotypes in the HLA-E 3'UTR are in close association with HLA-E coding alleles. NGS has proved to be an important tool on data generation for future studies evaluating variability in non-classical MHC genes.
Resumo:
Interferon regulatory factor 1 (IRF1) is functionally diverse in the regulation of immune response and is considered to be an important candidate gene for studying disease susceptibility in mammals. In this paper, we characterized the whole sequence of the IRF1 gene in river buffalo (Bubalus bubalis) and compared genomic and the amino acid sequences between different species. The buffalo IRF1 gene was 7099 bp long and organized into 10 exons and nine introns. Its molecular structure showed exactly the same number of exons (10) and introns (nine) in bovids, mice, horses, humans, and chickens. However, rats did not have exon 5, but had the largest exon 4, which suggests that exon 5 was incorporated into exon 4. The coding and the amino acid sequences of the gene showed that identity varied from 73 to 99% at the coding sequence level and from 61 to 100% at the amino acid level when compared with other mammals and chickens. Comparative analysis of the gene sequence between two different buffalo breeds, Murrah and Mediterranean, revealed six potential SNPs that are primarily located in the 5' and 3'UTRs.
Resumo:
Candida yeasts are common in the oral cavity and can cause candidosis in the presence of predisposing factors, especially diabetes. The manifestation of the disease is related to this set of local factors such as the presence of dental prostheses, salivary pH, salivary flow and tobacco and the ability to form biofilms. Biofilms are specific and organized communities of cells under the control of signaling molecules rather than random accumulations of cells resulting from cell division and frequently are drugs resistance. Aim: The objectives of this study were to determine the genetic patterns of these C. albicans isolates and to evaluate the in vitro activity amphotericin B and caspofungin against C. albicans biofilms. Methods: Microbial samples were collected from subgingival sites and seeded in CHROMagar for subsequent identification of C. albicans by PCR. Genotypes were defined based on the identification of the transposable introns in the 25S rDNA by PCR. Results: In this study, 6 strains were identified as C. albicans and of these, 3 strains were genotype A and 3 were genotype B. The results showed that both amphotericin B and caspofungin exhibited strong antifungal activities against C. albicans biofilm formation and inhibiting the biofilm formation ranging from 70.8 – 95.3% and 77.7 - 88.7%, respectively. The antifungals studied had low inhibitory effect on preformed biofims, ranging from 39.5 - 50.8% for amphotericin B and from 23.1 - 36.9% for caspofungin at the same concentration. The activity of the two drugs was most effective in inhibit biofilm formation.