21 resultados para SCHOTTKY DIODES
Resumo:
Lead zirconate titanate Pb(Zr0.50Ti0.50)O3 (PZT) thin films were deposited by a polymeric chemical method on Pt(111)/Ti/SiO2/Si substrates to understand the mechanisms of phase transformations and the effect of film thickness on the structure, dielectric, and piezoelectric properties in these films. PZT films pyrolyzed at temperatures higher than 350 °C present a coexistence of pyrochlore and perovskite phases, while only perovskite phase grows in films pyrolyzed at temperatures lower than 300 °C. For pyrochlore-free PZT thin films, a small (100)-orientation tendency near the film-substrate interface was observed. Finally, we demonstrate the existence of a self-polarization effect in the studied PZT thin films. The increase of self-polarization with the film thickness increasing from 200 nm to 710 nm suggests that Schottky barriers and/or mechanical coupling near the film-substrate interface are not primarily responsible for the observed self-polarization effect in our films. © 2013 AIP Publishing LLC.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Technological advances achieved during the twentieth century strongly boosted the scientific research in the area of condensed matter physics, especially in the study and development of new semiconductor materials. In the segment, the development of semiconducting polymers for application in electronic devices promotes the field of organic electronics...(Complete abstract click electronic access below)
Resumo:
During the twentieth century the inorganic electronics was largely developed being present in various industrial equipment or household use. However, at the end of that century were verified electronic properties in organic compounds, giving rise to the field of organic electronics. Since then, the physical properties of elementary devices such as diodes and organic transistors have been studied. In this work was studied the properties of diode devices fabricated with a semiconductor polymer, the poly-o-methoxyaniline (POMA). Devices containing electrodes of Au and Al were fabricated with semiconductor polymer of different doping levels. We found that the rectifying behavior for the heterojunctions metal/polimer are reached only for high doping level (with conductivity greater than 1,77. 10-9 S / cm), which gives the devices characteristic of a Schottky diode. The rectifying behavior was observed for electric fields of low magnitude, below the operating field (~ 600 V/cm), while for electric field greater than 600 V/cm the a linear behavior I vs.V was obtained. We determined that this Ohmic behavior arises from the charge transport over the volume of the semiconductor material after the lowering of the metal/semiconductor barrier. In devices with weakly doped semiconductor, the electrical resistance of the volume becomes high and the process of charge transportation is dominated by the volume, for any intensity of the applied electric field
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)