131 resultados para Root Mean Square
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Oliveira, AS, Greco, CC, Pereira, MP, Figueira, TR, de Araujo Ruas, VD, Goncalves, M, and Denadai, BS. Physiological and neuromuscular profile during a Bodypump session: acute responses during a high-resistance training session. J Strength Cond Res 23(2): 579-586, 2009-The main purposes of this study were 1) to describe and to compare blood lactate ([La]), heart rate (HR), and electromyographic (EMG) parameters during high-repetition training sessions (HRTSs), 2) to analyze the influence of physical fitness levels in these parameters, and, 3) to analyze the relationship between metabolic ([La]) and neuromuscular (EMG) responses during the HRTS. Fifteen healthy untrained women (21.7 +/- 2.1 years) performed an HRTS called Bodypump for 1 hour, which incorporated the use of variable free weights and high repetitions in a group setting. This session involved 10 music selections (M1-M10) containing resistive exercises for different muscle groups. After music selections 2 (M2), 4 (M4), 6 (M6), 7 (M7), and 9 (M9), [La], HR, and EMG (vastus medialis [VM], vastus lateralis [VL], iliocostalis lumborum [IC], and longissimus thoracis <) were determined. The [La] (M2, 4.00 +/- 1.45 mM; M7, 5.02 +/- 1.73 mM) and HR (M2, 153.64 +/- 18.89 bpm; M7, 16.14 +/- 20.14 bpm) obtained at M2 and M7 were similar but were significantly higher than the other moments of the session. However, EMG (root mean square [RMS]) at M2 (VL, VM, and LT) was lower than at M7. There was no significant correlation of strength and aerobic physical fitness with [La], RMS. In the same way, there was no significant correlation of [La] with RMS at M2 and M7. on the basis of our data, we can conclude that metabolic, cardiovascular, and EMG variables present different and independent behavior during an HRTS. Accordingly, for neuromuscular conditions during HRTS, it seems to be enough to induce improvement in the muscular strength of inferior limbs in untrained subjects.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objective: Hand-held flexible poles which are brought into oscillation to cause alternating forces on trunk, are advocated as training devices that are supposed to solicit increased levels of stabilizing trunk muscle activity. The aim of this study was to verify this claim by comparing electromyographic (EMG) activity of trunk muscles during exercises performed with a flexible pole and a rigid pole.Methods: Twelve healthy females performed three different exercises with flexible and rigid poles. EMG activity of iliocostalis lumborum (IL), multifidus (MU), rectus abdominis (RA), external oblique (EO) and internal oblique (IO), and was continuously measured. The EMG signals were analyzed in time domain by calculation of the Root Mean Square (RMS) amplitudes over 250 ms windows. The mean RMS-values over time were normalized by the maximum RMS obtained for each muscle.Results: The IO showed a 72% greater EMG activity during the exercises performed with the flexible pole than with the rigid pole (p = 0.035). In exercises performed in standing, the IO was significantly more active than when sitting (p = 0.006).Conclusion: As intended, the cyclic forces induced by the oscillating pole did increase trunk muscle activation. However, the effect was limited and significant for the IO muscle only.
Resumo:
The aim of this study was to evaluate the EMG activity of lumbar multifidus (MU), longissimus thoracis (LT) and iliocostalis (IC) muscles during an upper limb resistance exercise (biceps curl). Ten healthy males performed maximal voluntary isometric contraction (MVC) of the trunk extensors, after this, the biceps curl exercise was executed at 25%, 30%, 35% and 40% one repetition maximum during 1 min, with 10 min rest between them. EMG root mean square (RMS) and median frequency (MFreq) were calculated for each lifting and lowering of the bar during the exercise bouts, to calculate slopes and intercepts. The results showed increases in the RMS and decreases in the MFreq slopes. RMS slopes were no different between muscles, indicating similar fatigue process along the exercise irrespective of the load level. MU and LT presented higher RMS irrespective of the load level, which can be related to the specific function during the standing position. on the other hand, IC and MU presented higher MFreq intercepts compared to LT, demonstrating possible differences in the muscle fiber conduction velocity of these muscles. These findings suggest that trunk muscles are differently activate during upper limb exercises, and the fatigue process affects the lumbar muscles similarly. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A systematic study of the root-mean-square distance between the constituents of weakly-bound nuclei consisting of two halo neutrons and a core is performed using a renormalized zero-range model. The radii are obtained from a universal scaling function that depends on the mass ratio of the neutron and the core, as well as on the nature of the subsystems, bound or virtual. Our calculations are qualitatively consistent with recent data for the neutron-neutron root-mean-square distance in the halo of Li-11 and Be-14 nuclei. (C) 2004 Published by Elsevier B.V.
Resumo:
The classification of large halos formed by two identical particles and a core is systematically addressed according to interparticle distances. The root-mean-square distances between the constituents are described by universal scaling functions obtained from a renormalized zero-range model. Applications for halo nuclei, Li-11 and Be-14, and for atomicn He-4(3) are briefly discussed. The generalization to four-body systems is proposed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A stochastic variational method is applied to calculate the binding energies and root-mean-square radii of 2, 3 and 4 alpha particles using an S-wave Ali-Bodmer potential. The results agree with other calculations. We discuss the application of the present method to study the universality in weakly-bound three and four-body systems in the context of ultracold atomic traps.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Uma equação de regressão múltipla MOS (da sigla em inglês para Model Output Statistics), para previsão da temperatura mínima diária do ar na cidade de Bauru, estado de São Paulo, é desenvolvida. A equação de regressão múltipla, obtida usando análise de regressão stepwise, tem quatro preditores, três do modelo numérico global do Centro de Previsão de Tempo e Estudos Climáticos (CPTEC) e um observacional da estação meteorológica do Instituto de Pesquisas Meteorológicas (IPMet), Bauru. Os preditores são prognósticos para 24 horas do modelo global, válidos para 00:00GMT, da temperatura em 1000hPa, vento meridional em 850hPa e umidade relativa em 1000hPa, e temperatura observada às 18:00GMT. Esses quatro preditores explicam, aproximadamente, 80% da variância total do preditando, com erro quadrático médio de 1,4°C, que é aproximadamente metade do desvio padrão da temperatura mínima diária do ar observada na estação do IPMet. Uma verificação da equação MOS com uma amostra independente de 47 casos mostra que a previsão não se deteriora significativamente quando o preditor observacional for desconsiderado. A equação MOS, com ou sem esse preditor, produz previsões com erro absoluto menor do que 1,5°C em 70% dos casos examinados. Este resultado encoraja a utilização da técnica MOS para previsão operacional da temperatura mínima e seu desenvolvimento para outros elementos do tempo e outras localidades.
Resumo:
Soil surface roughness is known to influence water infiltration, runoff and erosion. Soil surface roughness changes with management and weather and its mathematical description still remains an important issue. The main objective of this study was to investigate the effect of tillage on the two fractal indices, fractal dimension, D, and crossover length, 1, currently used in characterizing soil surface microrelief. The statistical index random roughness, RR, was also assessed. Field experiments were done on an Alfisol located at Rio Grande do Sul State (Brazil). Two tillage treatments (conventional versus direct drilling) were tested. The soil surface microrelief was assessed by point elevation measurements in 16 plots for each treatment. The sampling scheme was a square grid with 20 x 20 mm between point spacing and the plot size was 280 x 280 mm, so that each data set consisted of 225 individual elevation points. All indices were calculated after trend removal, both by slope correction, i.e., oriented microrelief, and by slope plus tillage marks correction, i.e., random microrelief. The implemented algorithm for estimating D and 1 consisted in evaluating the roughness around the local root mean square deviation (RMS) of the point elevation values. Irrespective of tillage treatment and detrending procedure, fractal behavior extended only over a bounded range of scales, from 40 to 100 mm, due to the experimental setup. In these conditions, assessing fractal indices was not always straightforward. The statistical index RR and the fractal index I were significantly different between tillage treatments for oriented and random surface conditions. D values of random soil surfaces were not affected by tillage treatment, whereas D values of oriented microrelief were significantly lower in the direct drilled plots. Removal of tillage marks trend resulted in a significant increase in D values. Within each tillage treatment, 1 and D were significantly correlated. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a new model for the representation of electrodes' filaments of hot-cathode fluorescent lamps, during preheating processes based on the injection of currents with constant root mean square (rms) values. The main improvement obtained with this model is the prediction of the R-h/R-c ratio during the preheating process, as a function of the preheating time and of the rms current injected in the electrodes. Using the proposed model, it is possible to obtain an estimate of the time interval and the current that should be provided by the electronic ballast, in order to ensure a suitable preheating process. is estimate of time and current can be used as input data in the design of electronic ballasts with programmed lamp start, permitting the prediction of the R-h/R-c ratio during the initial steps of the design (theoretical analysis and digital simulation). Therefore, the use of the proposed model permits to reduce the necessity of several empirical adjustments in the prototype, in order to set the operation of electronic ballasts during the preheating process. This fact reduces time and costs associated to the global design procedure of electronic ballasts.