62 resultados para Relaxation oscillators
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Here we present a system of coupled phase oscillators with nearest neighbors coupling, which we study for different boundary conditions. We concentrate at the transition to the total synchronization. We are able to develop exact solutions for the value of the coupling parameter when the system becomes completely synchronized, for the case of periodic boundary conditions as well as for a chain with fixed ends. We compare the results with those calculated numerically.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate the dynamics of a Duffing oscillator driven by a limited power supply, such that the source of forcing is considered to be another oscillator, coupled to the first one. The resulting dynamics come from the interaction between both systems. Moreover, the Duffing oscillator is subjected to collisions with a rigid wall (amplitude constraint). Newtonian laws of impact are combined with the equations of motion of the two coupled oscillators. Their solutions in phase space display periodic (and chaotic) attractors, whose amplitudes, especially when they are too large, can be controlled by choosing the wall position in suitable ways. Moreover, their basins of attraction are significantly modified, with effects on the final state system sensitivity. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper energy transfer in a dissipative mechanical system is analysed. Such system is composed of a linear and a nonlinear oscillator with a nonlinearizable cubic stiffness. Depending on initial conditions, we find energy transfer either from linear to nonlinear oscillator (energy pumping) or from nonlinear to linear. Such results are valid for two different potentials. However, under resonance and absence of external excitation, if the mass of the nonlinear oscillator is adequately small then the linear oscillator always loses energy. Our approach uses rigorous Regular Perturbation Theory. Besides, we have included the case of two linear oscillators under linear or cubic interactions. Comparisons with the earlier case are made. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives. To evaluate the contractile and relaxing responses in rat corpus cavernosum (RCC) from rats after 8 weeks of run training, because erectile function is highly dependent on nitric oxide (NO) from nitrergic fibers or endothelium. Physical activity enhances NO production and improves endothelial function, with beneficial effects on cardiovascular disease.Methods. The training program consisted of 8 weeks of run training, 5 days/wk, and each session lasted 60 minutes. The RCC was isolated, and concentration-response curves to NO, acetylcholine, sodium nitroprusside, phenylephrine, and endothelin were obtained. The excitatory and inhibitory effects of electrical field stimulation (2 to 32 Hz) were also evaluated.Results. NO (0.1 to 100 muM) and sodium nitroprusside (0.01 to 1000 muM) produced a relaxing effect in RCC in a dose-dependent manner, with the maximal responses to NO (control 62% +/- 4%, trained 88% +/- 3%) and sodium nitroprusside (control 83% +/- 3%, trained 95% +/- 2%) significantly enhanced after 8 weeks of run training. However, acetylcholine-induced relaxations were not affected by exercise. Similarly, electrical field stimulation-induced relaxations were significantly increased in RCC from trained rats at 2 Hz (control 2.4% +/- 0.3%, trained 4.2% +/- 0.5%) and 4 Hz (control 5.3% +/- 1.2%, trained 12.5% +/- 1.7%). The contractile sensitivity of RCC to phenylephrine (0.01 to 100 AM) and endothelin (0.01 to 100 nM) was not modified by training exercise.Conclusions. Our findings suggest that run training enhances functional responses in rat RCC that involves increases in the NO-cyclic guanosine monophosphate signaling pathway by endothelium-independent mechanisms that is not accompanied by changes in contractile sensitivity. (C) 2004 Elsevier B.V.
Resumo:
We report for the first time the thermally stimulated depolarization current (TSDC) spectrum for a direct band-gap AlGaAs sample, where the presence of DX centers is clearly observed by photoconductivity measurements. A TSDC band is obtained, revealing the presence of dipoles, which could be attributed to DX--d+ pairs as indeed predicted by O'Reilly [Appl. Phys. Lett. 55, 1409 (1989)]. The data are fitted by relaxation time distribution approach yielding an average activation energy of 0.108 eV. This is the most striking feature of our data, since this energy has approximately the same value of the DX center binding energy.
Resumo:
The anelastic relaxation (elastic energy loss and Young modulus) of nearly stoichiometric La2CuO4+delta with LTO structure was measured. Extraordinarily intense effects are present below room temperature in the elastic dynamic susceptibility, indicating relaxational dynamics of a relevant fraction of the lattice. The involved degrees of freedom are identified as rotations of the CuO6 octahedra. Two distinct processes are found at frequencies around 1 kKz: one is observed around 150 K and is characterized by a mean activation energy of 2800 K; the second one occurs below 30 K and is governed by atomic tunnelling. Two explanations are proposed for the faster process: i) formation of fluctuating LTT domains on a scale of few atomic cells; ii) the LTO phase is a dynamical Jahn-Teller phase with all the octahedra tunneling between two LTT-like tilts. In both cases there would be important implications regarding the mechanisms giving rise to charge nanophase separation and strong electron-phonon coupling.
Resumo:
A side-chain methacrylate copolymer functionalized with the nonlinear optical chromophore 4-[N-ethyl-N-(2-hydroxyethyl)]amino-2'-chloro-4'-nitroazobenzene, disperse red-13, was prepared and characterized. The chromophore relaxation was investigated measuring the decay of the electrooptic coefficient r(13) and the complex dielectric constant at different temperatures. Results obtained below and above T-g were analyzed using the Kohlrausch-Williams-Watts(KWW) equation, through the study of the temperature dependence of the KWW parameters. Above T-g the relaxation time experimental data were fitted to the Williams-Landel-Ferry (WLF) equation and its parameters determined. Chromophore relaxation leading to the decrease of electrooptic properties was found associated with a primary alpha relaxation. The obtained WLF equation parameters were introduced into the Adam-Gibbs-Tool-Narayanaswamy-Moynihan equation, and the overall relaxation time temperature dependence was successfully obtained in terms of the fictive temperature, accounting for the sample thermal treatment and allowing optimized thermal treatment to be found. The copolymer KWW stretching parameter at the glass transition temperature lies close to the limit value for short-range interactions, i.e., 0.6, suggesting that the chromophore group is participating in primary a relaxation.
Resumo:
Temperature and frequency dependence of the F-19 nuclear spin relaxation of the fluoroindate glass, 40InF(3)-20ZnF(2)- 20SrF(2)-2GaF(3)-2NaF-16BaF(2) and the fluorozirconate glass, 50ZrF(4)-20BaF(2)-21LiF-5LaF(3)-4AlF(3); are reported. Measurements were undertaken on pure and Gd3+ doped samples, in the temperature range of 185-1000 K, covering the region below and above the glass transition temperature, T-g. The temperature and frequency dependence of the spin-lattice relaxation rate, T-1(-1), measured in the glassy state at temperature <300 K, is less than the observed dependence at higher temperatures. At temperatures >T-g, the fluorine mobility increases, leading to a more efficient spins lattice relaxation process. Activation energies, for F- motion, are 0.8 eV for the fluoroindate glass and 1 eV for the fluorozirconate glass. The addition of Gd3+ paramagnetic impurities;at 0.1-wt%, does not alter the temperature and frequency dependence of T-1(-1), but increases its magnitude more than one order of magnitude. At temperatures <400 K, the spin-spin relaxation time, T-2(-1), measured for all samples, is determined by the rigid-lattice nuclear dipole-dipole coupling, and it is temperature independent within the accuracy of the measurements. Results obtained for the pure glass, at temperatures >400 K, show that T-2(-1) decreases monotonically as the temperature increases. This decrease is explained as a consequence of the motional narrowing effect caused by the onset of the diffusive motion of the F- ions, with an activation energy around 0.8 eV. For the doped samples, the hyperfine interaction with the paramagnetic impurities is most effective in the relaxation of the nuclear spin, causing an increase in the T(2)(-1)s observed at temperatures >600 K. (C) 1999 Elsevier B.V. B.V. All rights reserved.