175 resultados para Receptors, GABA
Resumo:
Hypoxia causes a regulated decrease in body temperature (Tb). There is circumstantial evidence that the neurotransmitter serotonin (5-HT) in the anteroventral preoptic region (AVPO) mediates this response. However, which 5-HT receptor(s) is (are) involved in this response has not been assessed. Thus, we investigated the participation of the 5-HT receptors (5-HT(1), 5-HT(2), and 5-HT(7)) in the AVPO in hypoxic hypothermia. To this end, Tb of conscious Wistar rats was monitored by biotelemetry before and after intra-AVPO microinjection of methysergide (a 5-HT(1) and 5-HT(2) receptor antagonist, 0.2 and 2 mu g/100 nL), WAY-100635 (a 5-HT(1A) receptor antagonist, 0.3 and 3 mu g/100 nL), and SB-269970 (a 5-HT(7) receptor antagonist, 0.4 and 4 mu/100 nL), followed by 60 min of hypoxia exposure (7% O(2)). During the experiments, the mean chamber temperature was 24.6 +/- 0.7 degrees C (mean +/- SE) and the mean room temperature was 23.5 +/- 0.8 degrees C (mean +/- SE). Intra-AVPO microinjection of vehicle or 5-HT antagonists did not change Tb during normoxic conditions. Exposure of rats to 7% of inspired oxygen evoked typical hypoxia-induced hypothermia after vehicle microinjection, which was not affected by both doses of methysergide. However, WAY-100635 and SB-269970 treatment attenuated the drop in Tb in response to hypoxia. The effect was more pronounced with the 5-HT7 antagonist since both doses (0.4 and 4 mu g/0.1 mu L) were capable of attenuating the hypothermic response. As to the 5-HT(1A) antagonist, the attenuation of hypoxia-induced hypothermia was only observed at the higher dose. Therefore, the present results are consistent with the notion that 5-HT acts on both 5-HT(1A) and 5-HT7 receptors in the AVPO to induce hypothermia, during hypoxia. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
Hypothalamus is a site of integration of the hypoxic and thermal stimuli on breathing and there is evidence that serotonin (5-HT) receptors in the anteroventral preoptic region (AVPO) mediate hypoxic hypothermia. Once 5-HT is involved in the hypoxic ventilatory response (HVR), we investigated the participation of the 5-HT receptors (5-HT1, 5-HT2 and 5-HT7) in the AVPO in the HVR. To this end, pulmonary ventilation (V-E) of rats was measured before and after intra-AVPO microinjection of methysergide (a 5-HT1 and 5-HT2 receptor antagonist), WAY-100635 (a 5-HT1A receptor antagonist) and SB-269970 (a 5-HT7 receptor antagonist), followed by 60 min of hypoxia exposure (7% O-2). Intra-AVPO microinjection of vehicles or 5-HT antagonists did not change VE during normoxic conditions. Exposure of rats to 7% O-2 evoked typical hypoxia-induced hyperpnea after vehicle microinjection, which was not affected by methysergide. WAY-100635 and SB-269970 treatment caused an increased HVR, due to a higher tidal volume. Therefore, the current data provide the evidence that 5-HT acting on 5-HT1A and 5-HT7 receptors in the AVPO exert an inhibitory modulation on the HVR. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We evaluated the involvement of dorsal hippocampus (DH) 5-HT1A receptors in the mediation of the behavioral effects caused by the pharmacological manipulation of 5-HT neurons in the median raphe nucleus (MRN). To this end, we used the rat elevated T-maze test of anxiety. The results showed that intra-DH injection of the 5-HT1A/7 agonist 8-OH-DPAT facilitated inhibitory avoidance, an anxiogenic effect, without affecting escape. Microinjection of the 5-HT1A antagonist WAY-100635 was ineffective. In the elevated T-maze, inhibitory avoidance and escape have been related to generalized anxiety and panic disorders, respectively. Intra-MRN administration of the excitatory aminoacid kainic acid, which non-selectively stimulates 5-HT neurons in this brain area facilitated inhibitory avoidance and impaired escape performance, but also affected locomotion. Intra-MRN injection of WAY-100635, which has a disinhibitory effect on the activity of 5-HT neurons in this midbrain area, only facilitated inhibitory avoidance. Preadministration of WAY-100635 into the DH blocked the behavioral effect of intra-MRN injection of WAY-100635, but not of kainic acid. These results indicate that DH 5-HT1A receptors mediate the anxiogenic effect induced by the selective stimulation of 5-HT neurons in the MRN. (c) 2007 Elsevier B.V. and ECNP. All rights reserved.
Resumo:
Recent results from our laboratory have shown that 30-bites social conflict in mice produces a high-intensity, short-term analgesia which is attenuated by systemically injected 5-HT1A receptor agonists, such as BAY R 1531 (6-methoxy-4-(di-n-propylamino)-1,3,4,5-tetrahydrobenz(c,d)indole hydrochloride) and gepirone. The present study investigated the effects of these drugs, as well as the 5-HT1A receptor antagonist WAY 100135 (N-tert-butyl-3-(4-(2-methoxyphenyl)piperazine-1-yl)-2-phenylpropanamide) injected into the midbrain periaqueductal gray matter of mice on 30-bites analgesia. Four to five days after guide-cannula implantation, each mouse received microinjection of gepirone (30 nmol/0.2 mu l), BAY R 1531 (10 nmol/0.2 mu l), WAY 100135 (10 nmol/0.2 mu l), saline (0.9% NaCl) or vehicle (saline + 4% Tween 80) 5 min before either an aggressive (30 bites) or a non-aggressive interaction. Nociception was assessed by the tail-flick test made before as well as 1, 5, 10 and 20 min after social interaction. The full 5-HT1A receptor agonist BAY R 1531 blocked, whereas, WAY 100135 and gepirone intensified 30-bites analgesia, Neither non-aggressive interaction, per se, nor the three compounds given after this type of social interaction significantly changed nociception. These results indicate that 5-HT1A receptors in the periaqueductal gray inhibit analgesia induced by social conflict in mice. (C) 1998 Elsevier B.V. B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Diethylpropion (DEP) is an amphetamine-like agent used as an anorectic drug. Abuse of DEP has been reported and some restrictions of its use have been recently imposed. The conditioning place preference (CPP) paradigm was used to evaluate the reinforcing properties of DEP in adult male Wistar rats. After initial preferences were determined, animals weighing 250-300 g (N = 7 per group) were conditioned with DEP (10, 15 or 20 mg/kg). Only the dose of 15 mg/kg produced a significant place preference (358 ± 39 vs 565 ± 48 s). Pretreatment with the D1 antagonist SCH 23390 (0.05 mg/kg, sc) 10 min before DEP (15 mg/kg, ip) blocked DEP-induced CPP (418 ± 37 vs 389 ± 31 s) while haloperidol (0.5 mg/kg, ip), a D2 antagonist, 15 min before DEP was ineffective in modifying place conditioning produced by DEP (385 ± 36 vs 536 ± 41 s). These results suggest that dopamine D1 receptors mediate the reinforcing effect of DEP