64 resultados para Para magnetism
Resumo:
The effect of the bath pH on the electrodeposition of nanocrystalline Pd-Co alloys and on their magnetic properties was studied. The pH practically did not affect the alloy composition. Conversely, the pH showed a significant influence on the shape and size of crystallites. Two different crystallites morphology were observed depending on the bath pH. A crystallite size ranging from 18.2 to 30 nm was obtained from X-ray diffractometry (XRD) patterns using the Scherrer's method. Also from the XRD patterns the lattice strain percentage was calculated and correlated with the residual stress, which probably originated during the film electrodeposition on the substrate. Some alloy magnetic properties showed small variations. In contrast, high and unexpected coercivities were obtained reaching a maximum of 1.69 kOe at pH 5.5. The high coercivity values were attributed to the presence of residual stress at the film-substrate interface, which increased as the bath pH and crystallite size decrease, both of them contributing simultaneously to increase in coercivity. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
The magnetorefractive effect (MRE) has been used for the first time to study the magnetotransport properties of La1-xSrxMnO3 perovskite materials. A direct correlation between the MRE and colossal magnetoresistance was observed. Samples with x = 0-0.3 prepared using the homogeneous coprecipitation and the solid state reaction methods were studied, covering the range of insulating to metallic behaviour. The M RE probed both the magnetically induced modification of the scattering of Drude-like electrons and the magnetic dependence of a stretching vibration mode. (C) 2004 Elsevier B.V. All rights reserved.
Pharyngeal clearance and pharyngeal transit time determined by a biomagnetic method in normal humans
Resumo:
Clearance and transit time are parameters of great value in studies of digestive transit. Such parameters are nowadays obtained by means of scintigraphy and videofluoroscopy, with each technique having advantages and disadvantages. In this study we present a new, noninvasive method to study swallowing pharyngeal clearance (PC) and pharyngeal transit time (PTT). This new method is based on variations of magnetic flux produced by a magnetic bolus passing through the pharynx and detected by an AC biosusceptometer (ACB). These measurements may be performed in a simple way. cause no discomfort. and do not use radiation. We measured PC in 8 volunteers (7 males and I female. 23-33 years old) and PTT in 8 other volunteers (7 males and I female. 21-29 years old). PC was 0.82 +/- 0.10 s (mean +/- SD) and PTT was 0.75 +/- 0.03 s. The results were similar for PC but longer for PTT than those determined by means of other techniques. We conclude that the biomagnetic method can be used to evaluate PC and PTT.
Resumo:
The magnetic order resulting from the indirect exchange in the metallic phase of a (Ga,Mn)As/GaAs double layer structure is studied via Monte Carlo simulation. The polarization of the hole gas is taken into account, establishing a self-consistency between the magnetic order and the electronic structure. The Curie-Weiss temperatures calculated for these low-dimensional systems are in the range of 50-80 K, and the dependence of the transition temperature with the GaAs separation layer is established. (C) 2003 Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The preparation of superparamagnetic magnetite (Fe(3)O(4)) nanoparticles by electro-precipitation in ethanol is proposed. Particle average size can be set from 4.4 to 9 nm with a standard deviation around 20%. Combination of wide-angle X-ray scattering (WAXS), Electron energy loss spectroscopy (EELS) and Mossbauer spectroscopy characterizations clearly identifies the particles as magnetite single-crystals (Fe(3)O(4)). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new approach to the experimental determination of the critical temperature of metamagnetic samples with non-zero demagnetizing factors is presented. The method is applied to metamagnetic Ni(NO3)2·2H2O, allowing the conclusion that this salt exhibits a tricritical point. Pressure dependence of the critical temperature, and the existence of a pressure-induced metamagnetic transition are also reported. © 1986.
Resumo:
We obtain the behaviour of the critical (possibly tricritical) point for metamagnetic Ni(NO3)2·2H2O as a function of several applied hydrostatic pressures up to 11 kbar. The obtained line of possible tricritical points greatly suggests a pressure induced metamagnetic transition in a 0.8 kbar range. © 1987.
Resumo:
This work is concerned with the magnetic properties of Ni(NO3)2·2H2O from (Hin-T) and (Hap-T) phase diagrams. From these diagrams we have obtained the values of Hc(0), TN and Tt. A comparison between experimental and theoretical values of Tt is made, where a Tt relation for a spin 1 metamagnetic model is found. © 1988.
Resumo:
The formation of silica on core yttrium iron garnet presents a variety of different applications as corrosion resistance and stabilization of magnetic properties. Well-defined magnetic particles were prepared by heterocoagulating silica on yttrium iron garnet to protect the core. Yttrium iron garnet was obtained using a homogeneous nucleation process by controlling the chemical routes from cation hydrolysis in acid medium. The heterocoagulation was induced by tetraethyl orthosilicate hydrolysis in appropriate yttrium iron garnet dispersion medium. The presence of silica on yttrium iron garnet was characterized by vibrating sample magnetometry, X-ray photoemission spectroscopy, transmission electron microscopy, small area electron diffraction and differential thermal analysis. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Spindle-type iron fine particles have been prepared by reduction of silica-coated-hematite particles. Hydrogen reduction of the coated-hematite cores yielded uniform spindle-type iron particles, which were stabilized by surface oxidation. Narrow particle distributions are observed from TEM measurements. X-ray, Mössbauer and magnetization data are in agreement with the presence of nanosized α-Fe particles, having surface layer of spinel structure oxide. Mössbauer spectra show that the oxide surface is superparamagnetic at room temperature. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Austenitic stainless steel presents phase changes caused by heat treatment and welding processes. Because it represents a problem in the design of high-homogeneity magnets, we have been studying the magnetic properties of Ti alloys for their use instead of stainless steel as structural material for superconducting magnet construction. In this work, we present the comparative study of the influence of magnetic properties of steel and Ti alloys on the magnetic-field homogeneity of a superconducting coil through numerical calculation using the measured magnetic properties. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The purpose of this work is to obtain spherical particles yttrium iron garnet (YIG) by coprecipitation technique. The spherical particles were obtained from either nitrate or chloride salt solutions by controlling the precipitation medium. Different agents of dispersion such as PVP and ammonium iron sulfate were used to optimize the shape and size of YIG. Samples were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. The results show that the samples phase transition takes place at 850°C (orthorhombic phase) and at 1200°C (cubic phase). Spherical shape particles, with diameter of around 0.5 μm, present magnetization values close to the bulk value (26 emu g -1). © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The exact solution for the full electronic Hamiltonian for a two-level dimer is obtained. The parameter constellation (roughly 20) is reparametrized via orthogonal Gaussian atomic orbitals, yielding a five-parameter model. With the dimer embedded in a thermal bath, the specific heat and several temperature-dependent dynamical susceptibilities are computed. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Ferromagnetic behavior at room temperature is reported in metal-free-conducting polymer samples of poly(3-methylthiophene) doped with ClO 4 -. Magnetic moments associated with spin 1/2 positive polarons are possibly interacting through a Dzialoshinski-Moriya anisotropic superexchange via the dopant anions, giving rise to weak ferromagnetism. © 2001 Elsevier Science B.V. All rights reserved.