123 resultados para POLY(ACRYLIC ACID)
Resumo:
Organic-inorganic hybrids were prepared using ureapropyltriethoxysilane, methacryloxypropyltrimethoxysilane and acrylic acid modified zirconium(IV) n-propoxide precursors and were characterized by small angle X-ray scattering, X-ray diffraction and photoluminescence spectroscopy. The results indicate an effective interaction between the zirconium-based nanoparticles and the siliceous nanodomains that induces changes in the hybrids' emission features. Planar waveguides were obtained by spin-coating of the prepared sols on sodalime and silica substrates. Refractive index, thickness, number of propagating modes, and attenuation coefficient were measured at 543.5, 632.8 and 1550 nm by the prism coupling technique. The synergism between the two hybrid precursors resulted in monomode planar waveguides with low losses in the infrared ( from 0.6-1.1 dB cm(-1)) which also support a number of propagating modes in the visible ( losses from 0.4-1.5 dB cm(-1)). Channel waveguides were also obtained by UV photopatterning using amplitude or phase masks and propagating modes were observed at 1550 nm.
Resumo:
Purpose: This study evaluated the influence of polymerization cycle and thickness of maxillary complete denture bases on the porosity of acrylic resin. Materials and Methods: Two heat-activated denture base resins - one conventional (Clássico) and one designed for microwave polymerization (Onda-Cryl) - were used. Four groups were established, according to polymerization cycles: A (Onda-Cryl, short microwave cycle), B (Onda-Cryl, long microwave cycle), C (Onda-Cryl, manufacturing microwave cycle), and T (Clássico, water bath). Porosity was evaluated for different thicknesses (2.0, 3.5, and 5.0 mm; thicknesses I, II, and III, respectively) by measurement of the specimen volume before and after its immersion in water. The percent porosity data were submitted to Kruskal-Wallis for comparison among the groups. Results: The Kruskal-Wallis test detected that the combinations of the different cycles and thicknesses showed significant differences, and the mean ranks of percent porosity showed differences only in the thinnest (2.0 mm) microwave-polymerized specimens (A = 53.55, B = 40.80, and C = 90.70). Thickness did not affect the results for cycle T (I = 96.15, II = 70.20, and III = 82.70), because porosity values were similar in the three thicknesses. Conclusions: Microwave polymerization cycles and the specimen thickness of acrylic resin influenced porosity. Porosity differences were not observed in the polymerized resin bases in the water bath cycle for any thickness. © 2007 by The American College of Prosthodontists.
Resumo:
The electrochemical oxidation of 3,4-dihydroxycinnamic acid, caffeic acid, leads to a stable electroactive poly(caffeic acid) thin film containing quinone moiety on a preactivated glassy polymeric carbon electrode. The properties of the deposited films as well as the stability study under different experimental conditions were investigated. Taking advantage of the electrochemical behavior, an analytical method based on differential pulse voltammetry for determination of caffeic acid in red wine was proposed.
Resumo:
The selection and use of hard chairside reline resins must be made with regard to dimensional stability, which will influence the accuracy of fit of the denture base. This study compared the dimensional change of two hard chairside reline resins (Duraliner II and Kooliner) and one heat-curing denture base resin (Lucitone 550). A stainless steel mold with reference dimensions (AB, CD) was used to obtain the samples. The materials were processed according to the manufacturer's recommendations. Measurements of the dimensions were made after processing and after the samples had been stored in distilled water at 37° C for eight different periods of time. The data were recorded and then analyzed with analysis of variance. All materials showed shrinkage immediately after processing (p < 0.05). The only resin that exhibited shrinkage after 60 days of storage in water was Duraliner II; these changes could be clinically significant in regard of tissue fit.
Resumo:
STATEMENT OF PROBLEM: Because water sorption of autopolymerizing acrylic reline resins is accompanied by volumetric change, it is a physical property of importance. As residual monomer leaches into the oral fluids and causes tissue irritation, low solubility of these resins is desired. Another requirement is a satisfactory bond between the autopolymerizing acrylic resins and the denture base acrylic resin. PURPOSE: This study compared the water sorption, solubility, and the transverse bond strength of 2 autopolymerizing acrylic resins (Duraliner II and Kooliner) and 1 heat-polymerizing acrylic resin (Lucitone 550). MATERIAL AND METHODS: The water sorption and solubility test was performed as per International Standards Organization Specification No. 1567 for denture base polymers. Bond strengths between the autopolymerizing acrylic resins and the heat-polymerizing acrylic resin were determine with a 3-point loading test made on specimens immersed in distilled water at 37 degrees C for 50 hours and for 30 days. Visual inspection determined whether failures were adhesive or cohesive. RESULTS: Duraliner II acrylic resin showed significantly lower water sorption than Kooliner and Lucitone 550 acrylic resins. No difference was noted in the solubility of all materials. Kooliner acrylic resin demonstrated significantly lower transverse bond strength to denture base acrylic resin and failed adhesively. The failures seen with Duraliner II acrylic resin were primarily cohesive in nature. CONCLUSIONS: Autopolymerizing acrylic reline resins met water sorption and solubility requirements. However, Kooliner acrylic resin demonstrated significantly lower bond strength to denture base acrylic resin.
Resumo:
Purpose: This investigation studied the effects of 3 surface treatments on the shear bond strength of a light-activated composite resin bonded to acrylic resin denture teeth. Materials and Methods: The occlusal surfaces of 30 acrylic resin denture teeth were ground flat with up to 400-grit silicon carbide paper. Three different surface treatments were evaluated: (1) the flat ground surfaces were primed with methyl methacrylate (MMA) monomer for 180 seconds; (2) light-cured adhesive resin was applied and light polymerized according to the manufacturer's instructions; and (3) treatment 1 followed by treatment 2. The composite resin was packed on the prepared surfaces using a split mold. The interface between tooth and composite was loaded at a cross-head speed of 0.5 mm/min until failure. Results: Analysis of variance indicated significant differences between the surface treatments. Results of mean comparisons using Tukey's test showed that significantly higher shear bond strengths were developed by bonding composite resin to the surfaces that were previously treated with MMA and then with the bonding agent when compared to the other treatments. Conclusion: Combined surface treatment of MMA monomer followed by application of light-cured adhesive resin provided the highest shear bond strength between composite resin and acrylic resin denture teeth.
Resumo:
Statement of problem. Little data are available regarding the effect of heat-treatments on the dimensional stability of hard chairside reline resins. Purpose. The objective of this in vitro study was to evaluate whether a heat-treatment improves the dimensional stability of the reline resin Duraliner II and to compare the linear dimensional changes of this material with the heat-polymerized acrylic resin Lucitone 550. Material and methods. The materials were mixed according to the manufacturer's instructions and packed into a stainless steel split mold (50.0 mm diameter and 0.5 mm thickness) with reference points (A, B, C, and D). Duraliner II specimens were polymerized for 12 minutes in water at 37°C and bench cooled to room temperature before being removed from the mold. Twelve specimens were made and divided into 2 groups: group 1 specimens (n=6) were left untreated, and group 2 specimens (n=6) were submitted to a heat-treatment in a water bath at 55°C for 10 minutes and then bench cooled to room temperature. The 6 Lucitone specimens (control group) were polymerized in a water bath for 9 hours at 71°C. The specimens were removed after the mold reached the room temperature. A Nikon optical comparator was used to measure the distances between the reference points (AB and CD) on the stainless steel mold (baseline readings) and on the specimens to the nearest 0.001 mm. Measurements were made after processing and after the specimens had been stored in distilled water at 37°C for 8 different periods of time. Data were subjected to analysis of variance with repeated measures, followed by Tukey's multiple comparison test (P<.05). Results. All specimens exhibited shrinkage after processing (control, -0.41%; group 1, -0.26%; and group 2, -0.51%). Group 1 specimens showed greater shrinkage (-1.23%) than the control (-0.23%) and group 2 (-0.81%) specimens after 60 days of storage in water (P<.05). Conclusion. Within the limitations of this study, a significant improvement of the long-term dimensional stability of the Duraliner II reline resin was observed when the specimens were heat-treated. However, the shrinkage remained considerably higher than the denture base resin Lucitone 550. Copyright © 2002 by The Editorial Council of The Journal of Prosthetic Dentistry.
Resumo:
Microwave energy has been used as an alternative method for disinfection and sterilization of dental prostheses. This study evaluated the influence of microwave treatment on dimensional accuracy along the posterior palatal border of maxillary acrylic resin denture bases processed by water-bath curing. Thirty maxillary acrylic bases (3-mm-thick) were made on cast models with Clássico acrylic resin using routine technique. After polymerization and cooling, the sets were deflasked and the bases were stored in water for 30 days. Thereafter, the specimens were assigned to 3 groups (n=10), as follows: group I (control) was not submitted to any disinfection cycle; group II was submitted to microwave disinfection for 3 min at 500 W; and in group III microwaving was done for 10 min at 604 W. The acrylic bases were fixed on their respective casts with instant adhesive (Super Bonder®) and the base/cast sets were sectioned transversally in the posterior palatal zone. The existence of gaps between the casts and acrylic bases was assessed using a profile projector at 5 points. No statistically significant differences were observed between the control group and group II. However, group III differed statistically from the others (p<0.05). Treatment in microwave oven at 604 W for 10 min produced the greatest discrepancies in the adaptation of maxillary acrylic resin denture bases to the stone casts.
Resumo:
Purpose: The purpose of this study was to evaluate the effectiveness of microwave irradiation on the disinfection of simulated complete dentures. Materials and Methods: Eighty dentures were fabricated in a standardized procedure and subjected to ethylene oxide sterilization. The dentures were individually inoculated (10 7 cfu/mL) with tryptic soy broth (TSB) media containing one of the tested microorganisms (Candida albicans, Streptoccus aureus, Bacillus subtilis, and Pseudomonas aeruginosa). After 48 hours of incubation at 37°C, 40 dentures were individually immersed in 200 mL of water and submitted to microwave irradiation at 650 W for 6 minutes. Forty nonirradiated dentures were used as positive controls. Replicate aliquots (25 μL) of suspensions were plated at dilutions of 10 -3 to 10 -6 on plates of selective media appropriate for each organism. All plates were incubated at 37°C for 48 hours. TSB beakers with the microwaved dentures were incubated at 37°C for 7 more days. After incubation, the number of colony-forming units was counted and the data were statistically analyzed by Kruskal-Wallis test (α = .05). Results: No evidence of growth was observed at 48 hours for S aureus, B subtilis, and C albicans. Dentures contaminated with P aeruginosa showed small growth on 2 plates. After 7 days incubation at 37°C, no growth was visible in the TSB beakers of S aureus and C albicans. Turbidity was observed in 3 broth beakers, 2 from P aeruginosa and 1 from B subtilis. Conclusion: Microwave irradiation for 6 minutes at 650 W produced sterilization of complete dentures contaminated with S aureus and C albicans and disinfection of those contaminated with P aeruginosa and B subtilis.
Resumo:
Purpose: Potential effects on hardness and roughness of a necessary and effective disinfecting regimen (1% sodium hypocholorite and 4% chlorhexidine) were investigated for two hard chairside reline resins versus a heat-polymerizing denture base acrylic resin. Materials and Methods: Two standard hard chairside reliners (Kooliner and Duraliner II), one heat-treated chairside reliner (Duraliner II +10 minutes in water at 55°C), and one standard denture base material (Lucitone 550) were exposed to two disinfecting solutions (1% sodium hypochlorite; 4% chlorhexidine gluconate), and tested for two surface properties [Vickers hardness number (VHN, kg/mm2); Roughness (Ra, μm)] for different times and conditions (1 hour after production, after 48 hours at 37 ± 2°C in water, after two disinfection cycles, after 7 days in disinfection solutions, after 7 days in water only). For each experimental condition, eight specimens were made from each material. Data were analyzed by analysis of variance followed by Tukey's test, and Student's t-test (p= 0.05). Results: For Kooliner (from 6.2 ± 0.3 to 6.5 ± 0.5 VHN) and Lucitone 550 (from 16.5 ± 0.4 to 18.4 ± 1.7 VHN), no significant changes in hardness were observed either after the disinfection or after 7 days of immersion, regardless of the disinfectant solution used. For Duraliner II (from 4.0 ± 0.1 to 4.2 ± 0.1 VHN), with and without heat treatment, a small but significant increase in hardness was observed for the specimens immersed in the disinfectant solutions for 7 days (from 4.3 ± 0.2 to 4.8 ± 0.5 VHN). All materials showed no significant change in roughness (Kooliner: from 0.13 ± 0.05 to 0.48 ± 0.24 μm; Duraliner II, with and without heat treatment: from 0.15 ± 0.04 to 0.29 ± 0.07 μm; Lucitone 550: from 0.44 ± 0.19 to 0.49 ± 0.15 μm) after disinfection and after storage in water for 7 days. Conclusions: The disinfectant solutions, 1% sodium hypochlorite and 4% chlorhexidine gluconate, caused no apparent damage on hardness and roughness of the materials evaluated. Copyright © 2006 by The American College of Prosthodontists.
Resumo:
This study aimed to evaluate the durability of adhesion between acrylic teeth and denture base acrylic resin. The base surfaces of 24 acrylic teeth were flatted and submitted to 4 surface treatment methods: SM1 (control): No SM; SM2: application of a methyl methacrylate-based bonding agent (Vitacol); SM3: air abrasion with 30-μm silicone oxide plus silane; SM4: SM3 plus SM2. A heat-polymerized acrylic resin was applied to the teeth. Thereafter, bar specimens were produced for the microtensile test at dry and thermocyled conditions (60 days water storage followed by 12,000 cycles). The results showed that bond strength was significantly affected by the SM (P < .0001) (SM4 = SM2 > SM3 > SM1) and storage regimens (P < .0001) (dry > thermocycled). The methyl methacrylate-based adhesive showed the highest bond strength.
Resumo:
Purpose: The effect of water immersion on the shear bond strength (SBS) between 1 heat-polymerizing acrylic resin (Lucitone 550-L) and 4 autopolymerizing reline resins (Kooliner-K, New Truliner-N, Tokuso Rebase Fast-T, Ufi Gel Hard-U) was investigated. Specimens relined with resin L were also evaluated. Materials and Methods: One hundred sixty cylinders (20 × 20 mm) of L denture base resin were processed, and the reline resins were packed on the prepared bonding surfaces using a split-mold (3.5 × 5.0 mm). Shear tests (0.5 mm/min) were performed on the specimens (n = 8) after polymerization (control), and after immersion in water at 37°C for 7, 90, and 180 days. All fractured surfaces were examined by scanning electron microscopy (SEM) to calculate the percentage of cohesive fracture (PCF). Shear data were analyzed with 2-way ANOVA and Tukey's test; Kruskall-Wallis test was used to analyze PCF data (α = 0.05). Results: After 90 days water immersion, an increase in the mean SBS was observed for U (11.13 to 16.53 MPa; p < 0.001) and T (9.08 to 13.24 MPa, p = 0.035), whereas resin L showed a decrease (21.74 MPa to 14.96 MPa; p < 0.001). The SBS of resins K (8.44 MPa) and N (7.98 MPa) remained unaffected. The mean PCF was lower than 32.6% for K, N, and T, and higher than 65.6% for U and L. Conclusions: Long-term water immersion did not adversely affect the bond of materials K, N, T, and U and decreased the values of resin L. Materials L and U failed cohesively, and K, N, and T failed adhesively. © 2007 by The American College of Prosthodontists.
Resumo:
Purpose: The aim of this study was to evaluate the effectiveness of disinfectant solutions (1% sodium hypochlorite, 2% chlorhexidine digluconate, 2% glutaraldehyde, 100% vinegar, tabs of sodium perborate-based denture cleanser, and 3.8% sodium perborate) in the disinfection of acrylic resin specimens (n = 10/group) contaminated in vitro by Candida albicans, Streptococcus mutans, S. aureus, Escherichia coli, or Bacillus subtilis as measured by residual colony-forming unit (CFU). In a separate experiment, acrylic resin was treated with disinfectants to monitor potential effects on surface roughness, Ra (μm), which might facilitate microbial adherence. Materials and Methods: Three hundred fifty acrylic resin specimens contaminated in vitro with 1×10 6 cells/ml suspensions of standard strains of the cited microorganisms were immersed in the disinfectants for 10 minutes; the control group was not submitted to any disinfection process. Final counts of microorganisms per ml were performed by plating method for the evaluation of microbial level reduction. Results were compared statistically by ANOVA and Tukey's test (p ≤ 0.05). In a parallel study aiming to evaluate the effect of the tested disinfectant on resin surface, 60 specimens were analyzed in a digital rugosimeter before and after ten cycles of 10-minute immersion in the disinfectants. Measurements of superficial roughness, Ra (μm), were compared statistically by paired t-test (p ≤ 0.05). Results: The results showed that 1% sodium hypochlorite, 2% glutaraldehyde, and 2% chlorhexidine digluconate were most effective against the analyzed microorganisms, followed by 100% vinegar, 3.8% sodium perborate, and tabs of sodium perborate-based denture cleanser. Superficial roughness of the specimens was higher after disinfection cycles with 3.8% sodium perborate (p = 0.03) and lower after the cycles with 2% chlorhexidine digluconate (p = 0.04). Conclusion: Within the limits of this experiment, it could be concluded that 1% sodium hypochlorite, 2% glutaraldehyde, 2% chlorexidine, 100% vinegar, and 3.8% sodium perborate are valid alternatives for the disinfection of acrylic resin. © 2008 by The American College of Prosthodontists.
Resumo:
The aim of this study was to evaluate the dimensional changes of denture bases made from different resins after different storage periods. For this purpose, 25 sets of plaster models/resin bases were prepared using 4 acrylic resins submitted to two types of polymerization: 1- QC-20 submitted to polymerization by microwave energy; 2- QC-20 submitted to polymerization by water hot bath; 3- Vipi Cril submitted to polymerization by water hot bath; 4- Vipi Wave submitted to polymerization by microwave energy; and 5- Onda Cryl submitted to polymerization by microwave energy. After polymerization, the specimens were sectioned for accuracy readings using a comparison microscope. Readings were taken at 3 points: the crests of the right (A) and left (B) ridges, and the median region of the palate, in 4 different periods. The data obtained were submitted to two-way ANOVA and Tukey's test at 5% significance level. The greatest distortions were found in the posterior palatal region of the base (M), with statistically significant difference (p<0.05) for the studied resins. All acrylic resins presented dimensional changes and the storage period influenced these alterations.
Resumo:
This study evaluated the effect of microwave energy on the hardness, impact strength and flexural strength of the Clássico, Onda-Cryl and QC-20 acrylic resins. Aluminum die were embedded in metallic or plastic flasks with type III dental stone, in accordance with the traditional packing technique. A mixing powder/liquid ratio was used according to the manufacturer's instructions. After polymerization in water batch at 74°C for 9 h, boiling water for 20 min or microwave energy at 900 W for 10 min, the specimens were deflasked after flask cooling at room temperature, and submitted to finishing. Specimens non-disinfected and disinfected by microwave irradiation were submitted to hardness, impact and flexural strength tests. Each specimen was immersed in distilled water and disinfected in a microwave oven calibrated to 650 W for 3 min. Knoop hardness test was performed with 25 g load for 10 s, impact test was carried out using the Charpy system with 40 kpcm, and 3-point bending test with a crosshead speed of 0.5 mm/min until fracture. Data were submitted to statistical analysis by ANOVA and Tukey's test (α=0.05). Disinfection by microwave energy decreased the hardness of Clássico and Onda-Cryl acrylic resins, but no effect was observed on the impact and flexural strength of all tested resins.