431 resultados para Oxide precursor method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of potassium niobate were deposited on (100) Si substrates by the polymeric precursor method (Pechini method). Annealing in static air was performed at 600degrees C for 20 h. The obtained films were characterized by X-ray diffraction and atomic force microscopy (AFM). Electrical characterization of the films pointed to ferroelectricity via hysteresis loop. The dielectric constant, dissipation factor and resistance were measured in frequency region from 10 Hz to 10 MHz. At 1 MHz, the dielectric constant was 158 and the dissipation factor was 0.11. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline Al(2)O(3)powders have been synthesized by the polymeric precursor method. A study of the evolution of crystalline phases of obtained powders was accomplished through X-ray diffraction, micro-Raman spectroscopy and refinement of the structures through the Rietveld method. The results obtained allow the identification of three steps on the gamma-Al2O3 to alpha-Al2O3 phase transition. The single-phase alpha-Al2O3 Powder was obtained after heat-treatment at 1050 degrees C for 2 h. A study of the morphology of the particles was accomplished through measures of crystallite size, specific surface area and transmission electronic microscopy. The particle size is closely related to gamma-Al2O3 to alpha-Al2O3 phase transition. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of lithium niobate were deposited on (100) silicon by the polymeric precursor method (Pechini method). Annealing in static air was performed at 500degreesC for 3 h. The films obtained were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Electrical characterization of the films pointed to ferroelectricity via hysteresis loop. The dielectric constant, dissipation factor and resistance were measured in the frequency region from 10 Hz to 10 MHz. At 1 MHz, the dielectric constant was 46 and the dissipation factor was 0.043. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Al2O3 and Al2-x Cr (x) O-3 (x = 0.01, 0.02 and 0.04) powders have been synthesized by the polymeric precursors method. A study of the structural evolution of crystalline phases corresponding to the obtained powders was accomplished through X-Ray Diffraction and UV-vis spectroscopy (reflectance spectra and CIEL* a*b* color data). The obtained results allow to identify the gamma-Al2O3 to alpha-Al2O3 phase transition. The single-phase alpha-Al2O3 powder was obtained after heat treatment at 1050 degrees C for 2 h. The results show that the green to red color transition and ruby luminescence lines observed for the powders of Al2-x Cr (x) O-3 are related to the gamma to alpha-Al2O3 phase transition and the temperature and time range for such transition depends on the chromium content.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lanthanum-modified bismuth titanate, Bi4-xLaxTi3O12 (BLT), with x ranging from 0 to 0.75 was grown on Pt/Ti/SiO2/Si substrates using a polymeric precursor solution and spin-coating method. The dielectric constant of highly doped bismuth titanate was equal to 148 while dielectric losses remained low (tan delta = 0.0018), and the films showed well-saturated polarization-electric field curves (2P(r) = 40.6 muC/cm(2) and V-c = 0.99 V). The leakage current densities improve for the lanthanum-doped system. For five-layered BLT films with x = 0.75, a charge storage density of 35 fC/mum(2) and a thickness of 320 nm were found. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LiNbO3 thin films were grown on (0001) sapphire substrates by a chemical route, using the polymeric precursor method. The overall process consists of preparing a coating solution from the Pechini process, based on metallic citrate polymerization, the precursor films, deposited by dip coating, are then heat treated to eliminate the organic material and to synthesize the phase. In this work, we studied the influence of the heat treatment on the structural and optical properties of single-layered films. Two routes were also investigated to increase the film thickness: increasing the viscosity of the coating solution and/or increasing the number of successively deposited layers. The x-ray diffraction theta -2 theta scans revealed the c-axis orientation of the single- and multilayered films and showed that efficient crystallization can be obtained at temperatures as low as 400 degreesC, the phi-scan diffraction evidenced the epitaxial growth with two in-plane variants, A microstructural study revealed that the films were crack free, homogeneous, and relatively dense. Finally, the investigation of the optical properties (optical transmittance and refractive index) confirmed the good quality of the films. These results indicate that the polymeric precursor method is a promising process to develop lithium niobate waveguides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper 4.5SiO(2)-3Al(2)O(3-x)Nb(2)O(5)-2CaO powders have been synthesized using a chemical process the Polymeric Precursor Method. The process of glass formation has been investigated by XRD and DTA, the results confirm that the prepared powders are glasses. Experimental data show that amount of Nb2O5 had a considerable effect on the T-g values. The structures of glasses prepared. have been determined by Si-29 and Al-27 MAS NMR and the results indicated that the network is formed by SiO4 and AlO4 tetrahedral linked and probably Si-O-Nb bonds are present in the vitreous network. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive ZrxTi1-xO4 (x=0.65, 0.50 and 0.35) powder was prepared by the polymeric precursor method. Studies by X-ray diffraction (XRD), nitrogen adsorption/desorption, and thermogravimetric analysis (TG) showed that powders with high crystallinity (>90%) and high surface areas (>40 m(2)/g) are obtained after calcination at 700 degrees C for 3 h. Infrared spectroscopy and XRD results showed that these titanates nucleate from the amorphous phase with no intermediate phases, at low temperature (450 degrees C).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure and niobium doped bismuth titanate ceramics (Bi4Ti3-xNbxO12 (BTN)), with x ranging from 0 to 0.4 were prepared by the polymeric precursor method. X-ray diffraction showed no secondary phases. Increasing niobium content leads to more resistive ceramics. The shape and size of the grains are strongly influenced by the niobiurn added to the system. The dielectric constant is not influenced by the niobium addition while hysteresis loops are significantly narrowed. (c) 2006 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BaxSr1-xTiO3 (x = 0.6) (BST) thin films were successfully prepared on a Pt(111)/TiO2/SiO2/Si(100) substrate by spin coating, using the polymeric precursor method. BST films with a perovskite single phase were obtained after heat treatment at 700 degrees C. The multilayer BST thin films had a granular structure will a grain size of approximately 60 nm. A 480-nm-thick film was obtained by carrying out five cycles of the spin-coating/heating process. Scanning electron microscopy and atomic force microscopy analyses showed that the thin films had a smooth, dense, crack-free surface with low surface roughness (3.6 nm). At room temperature and at a frequency of 100 kHz, the dielectric constant and the dissipation factor were, respectively, 748 and 0.042. The high dielectric constant value was due to the high microstructural quality and chemical homogeneity of the thin films obtained by the polymeric precursor method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pb1- xCaxTiO3 thin films with x = 0.24 composition were prepared by the polymeric precursor method on Pt/Ti/SiO2/Si substrates. The surface morphology and crystal structure, and the ferroelectric and dielectric properties of the films were investigated. X-ray diffraction patterns of the films revealed their polycrystalline nature. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses showed the surface of these thin films to be smooth, dense and crack-free with low surface roughness. The multilayer Pb1-xCaxTO3 thin films were granular in structure with a grain size of approximately 60-70 nm. The dielectric constant and dissipation factor were, respectively, 174 and 0.04 at a 1 kHz frequency. The 600-nm thick film showed a current density leakage in the order of 10(-7) A/cm(2) in an electric field of about 51 kV/cm. The C-V characteristics of perovskite thin films showed normal ferroelectric behavior. The remanent polarization and coercive field for the deposited films were 15 muC/cm(2) and 150 kV/cm, respectively. (C) 2001 Kluwer Academic Publishers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we report the synthesis procedure, crystallographic, structural and magnetic properties of the Li2ZnTi3O8 spinel obtained using a modified polymeric precursor method. This synthesis method generates very reactive and property-controlled nanoparticles. The samples were characterized using X-ray powder diffraction (XRD) associated to the Rietveld refinement method, thermogravimetric analysis (TG), specific surface area, scanning electron microscopy (SEM) and magnetic susceptibility measurements.The phase formation temperature of the lithium zinc titanate spinel was observed to decrease due to the homogeneity and highly controlled nanometric particle size. (C) 2003 Elsevier B.V. All rights reserved.