32 resultados para Operation Overlord.
Resumo:
In this work it is proposed an optimized dynamic response of parallel operation of two single-phase inverters with no control communication. The optimization aims the tuning of the slopes of P-ω and Q-V curves so that the system is stable, damped and minimum settling time. The slopes are tuned using an algorithm based on evolutionary theory. Simulation and experimental results are presented to prove the feasibility of the proposed approach. © 2010 IEEE.
Resumo:
The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75 848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented. © 2010 IOP Publishing Ltd and SISSA.
Resumo:
This paper adjusts decentralized OPF optimization to the AC power flow problem in power systems with interconnected areas operated by diferent transmission system operators (TSO). The proposed methodology allows finding the operation point of a particular area without explicit knowledge of network data of the other interconnected areas, being only necessary to exchange border information related to the tie-lines between areas. The methodology is based on the decomposition of the first-order optimality conditions of the AC power flow, which is formulated as a nonlinear programming problem. To allow better visualization of the concept of independent operation of each TSO, an artificial neural network have been used for computing border information of the interconnected TSOs. A multi-area Power Flow tool can be seen as a basic building block able to address a large number of problems under a multi-TSO competitive market philosophy. The IEEE RTS-96 power system is used in order to show the operation and effectiveness of the decentralized AC Power Flow. ©2010 IEEE.
Resumo:
Due to the renewed interest in distributed generation (DG), the number of DG units incorporated in distribution systems has been rapidly increasing in the past few years. This situation requires new analysis tools for understanding system performance, and taking advantage of the potential benefits of DG. This paper presents an evolutionary multi-objective programming approach to determine the optimal operation of DG in distribution systems. The objectives are the minimization of the system power losses and operation cost of the DG units. The proposed approach also considers the inherent stochasticity of DG technologies powered by renewable resources. Some tests were carried out on the IEEE 34 bus distribution test system showing the robustness and applicability of the proposed methodology. © 2011 IEEE.
Resumo:
In this paper, the calculation of the steady-state operation of a radial/meshed electrical distribution system (EDS) through solving a system of linear equations (non-iterative load flow) is presented. The constant power type demand of the EDS is modeled through linear approximations in terms of real and imaginary parts of the voltage taking into account the typical operating conditions of the EDS's. To illustrate the use of the proposed set of linear equations, a linear model for the optimal power flow with distributed generator is presented. Results using some test and real systems show the excellent performance of the proposed methodology when is compared with conventional methods. © 2011 IEEE.
Resumo:
In this work, a mathematical model to analyze the impact of the installation and operation of dispersed generation units in power distribution systems is proposed. The main focus is to determine the trade-off between the reliability and operational costs of distribution networks when the operation of isolated areas is allowed. In order to increase the system operator revenue, an optimal power flow makes use of the different energy prices offered by the dispersed generation connected to the grid. Simultaneously, the type and location of the protective devices initially installed on the protection system are reconfigured in order to minimize the interruption and expenditure of adjusting the protection system to conditions imposed by the operation of dispersed units. The interruption cost regards the unsupplied energy to customers in secure systems but affected by the normal tripping of protective devices. Therefore, the tripping of fuses, reclosers, and overcurrent relays aims to protect the system against both temporary and permanent fault types. Additionally, in order to reduce the average duration of the system interruption experienced by customers, the isolated operation of dispersed generation is allowed by installing directional overcurrent relays with synchronized reclose capabilities. A 135-bus real distribution system is used in order to show the advantages of using the mathematical model proposed. © 1969-2012 IEEE.
Resumo:
Copepod assemblages from two cascade reservoirs were analyzed during two consecutive years. The upstream reservoir (Chavantes) is a storage system with a high water retention time (WRT of 400 days), and the downstream one (Salto Grande) is a run-of-river system with only 1. 5 days WRT. Copepod composition, richness, abundance, and diversity were correlated with the limnological variables and the hydrological and morphometric features. Standard methods were employed for zooplankton sampling and analysis (vertical 50-μm net hauls and counting under a stereomicroscope). Two hypotheses were postulated and confirmed through the data obtained: (1) compartmentalization is more pronounced in the storage reservoir and determines the differences in the copepod assemblage structure; and (2) the assemblages are more homogeneous in the run-of-river reservoir, where the abundance decreases because of the predominance of washout effects. For both reservoirs, the upstream zone is more distinctive. In addition, in the smaller reservoir the influence of the input from tributaries is stronger (turbid waters). Richness did not differ significantly among seasons, but abundance was higher in the run-of-river reservoir during summer. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
Objective: To assess the influence of air abrasion tips and system operation modes on enamel cutting. Methods: Forty bovine teeth were abraded with the air abrasion system Mach 4.1 for 10 and 15 seconds, employing conventional and sonic tips of 0.45-mm inner diameter and a 90° angle, and 27.5-μm aluminum oxide at 5.51 bar air pressure in continuous and pulsed modes. The width and depth of the resulting cuts were measured in SEM. Results: The multivariate analysis of variances revealed that, compared to the sonic tip, the conventional tip produced shallower cuts independent of the operation mode and the application period. Conclusions: The cutting patterns observed in this study suggest that the pulsed mode produced deeper cuts when both the conventional and sonic tips were used, and that the sonic tip cut more dental tissue than the conventional one.
Resumo:
The sugarcane mechanized planting is becoming increasingly widespread in Brazil due to a higher operability and better working conditions offered to workers compared to other types of planting. Studies related to this topic are insufficient or scarce in Brazil. In this context, the aim of this study was to evaluate the operation quality of sugarcane mechanized planting in two operation shifts, by means of statistical process control. The mechanized planting was held on March 2012 and statistical design was completely randomized with two treatments, totaling 40 replications for the day shift and 40 replications for the night shift. The variables evaluated were: speed, engine rotation, engine oil pressure, water temperature of the engine, effective field capacity and the time consumption hourly and effective fuel. The use of statistical control charts showed that random intrinsic do not cause this process. The tractor alignment error showed outliers in the day and night shifts operations, indicating a possible delay in receiving the signal. The water temperature of the engine and the effective fuel consumption showed lower variability in nighttime operation with average values of 81°C and 22.66 L ha-1, respectively. The hourly fuel consumption had greater variability and consequently lower quality during the night of the operation, with an average consumption of 25.46 L h-1 while the day shift showed 26.86 L h-1.
Resumo:
This paper proposes an approach to load characterization and revenue metering, which accounts for the influence of supply deterioration and line impedance. It makes use of the Conservative Power Theory and aims at characterizing the load from the measurements done at the point of common coupling. Despite the inherent limitations of a single-point measurement, the proposed methodology enables evaluation of power terms, which clarify the effects of reactivity, asymmetry and distortion, and attempts to depurate the power consumption accounted to the load from those terms deriving from supply nonidealities.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The grinding operation gives workpieces their final finish, minimizing surface roughness through the interaction between the abrasive grains of a tool (grinding wheel) and the workpiece. However, excessive grinding wheel wear due to friction renders the tool unsuitable for further use, thus requiring the dressing operation to remove and/or sharpen the cutting edges of the worn grains to render them reusable. The purpose of this study was to monitor the dressing operation using the acoustic emission (AE) signal and statistics derived from this signal, classifying the grinding wheel as sharp or dull by means of artificial neural networks. An aluminum oxide wheel installed on a surface grinding machine, a signal acquisition system, and a single-point dresser were used in the experiments. Tests were performed varying overlap ratios and dressing depths. The root mean square values and two additional statistics were calculated based on the raw AE data. A multilayer perceptron neural network was used with the Levenberg-Marquardt learning algorithm, whose inputs were the aforementioned statistics. The results indicate that this method was successful in classifying the conditions of the grinding wheel in the dressing process, identifying the tool as "sharp''(with cutting capacity) or "dull''(with loss of cutting capacity), thus reducing the time and cost of the operation and minimizing excessive removal of abrasive material from the grinding wheel.
Resumo:
Electric power distribution systems, and particularly those with overhead circuits, operate radially but as the topology of the systems is meshed, therefore a set of circuits needs to be disconnected. In this context the problem of optimal reconfiguration of a distribution system is formulated with the goal of finding a radial topology for the operation of the system. This paper utilizes experimental tests and preliminary theoretical analysis to show that radial topology is one of the worst topologies to use if the goal is to minimize power losses in a power distribution system. For this reason, it is important to initiate a theoretical and practical discussion on whether it is worthwhile to operate a distribution system in a radial form. This topic is becoming increasingly important within the modern operation of electrical systems, which requires them to operate as efficiently as possible, utilizing all available resources to improve and optimize the operation of electric power systems. Experimental tests demonstrate the importance of this issue. (C) 2014 Elsevier Ltd. All rights reserved.