287 resultados para OILS
Resumo:
Vegetable oils and their derivatives, like biodiesel, are used extensively throughout the world, thus posing an environmental risk when disposed. Toxicity testing using test organisms shows how these residues affect ecosystems. Toxicity tests using earthworms (Eisenia foetida. are widespread because they are a practical resource for analyzing terrestrial organisms. For phytotoxicological analysis, we used seeds of arugula (Eruca sativa and lettuce (Lactuca sativa. to analyze the germination of seeds in contaminated soil samples. The toxicological experiment was conducted with four different periods of biodegradation in soil: zero days, 60 days, 120 days and 180 days. The studied contaminants were soybean oil (new and used) and biodiesel (B100). An evaluation of the germination of both seeds showed an increased toxicity for all contaminants as the biodegradation occurred, biodiesel being the most toxic among the contaminants. on the other hand, for the tests using earthworms, the biodiesel was the only contaminant that proved to be toxic. Therefore, the higher toxicity of the sample containing these hydrocarbons over time can be attributed to the secondary compounds formed by microbial action. Thus, we conclude that the biodegradation in soil of the studied compounds requires longer periods for the sample toxicity to be decreased with the action of microorganisms.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Vegetable oils are important sources of essential fatty acids. It is, therefore, important to characterize plant species that can be used as new oil sources. This study aimed to characterize the oils from guariroba (Syagrus oleracea), jeriva (Syagrus romanzoffiana), and macauba (Acrocomia aculeata). The physicochemical characterization was performed using official analytical methods for oils and fats, free fatty acids, peroxide value, refractive index, iodine value, saponification number, and unsaponifiable matter. The oxidative stability was determined using the Rancimat at 110 degrees C. The fatty acid composition was performed by gas chromatography. The results were submitted to Tukey's test for the medium to 5% using the ESTAT program. The pulp oils were more unsaturated than kernel oils, as evidenced by the higher refractive index and iodine value, especially the macauba pulp oil which gave 1.4556 and 80 g I(2)/100 g, respectively, for these indices. The kernel oils were less altered by oxidative process and had high induction period, free fatty acids below 0.5%, and peroxide value around 0.19 meq/kg. The guariroba kernel oil showed the largest induction period, 91.82 h.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Essential oils were obtained from roots of 10 Aristolochia species by hydrodistillation and analysed by GC MS. A total of 75 compounds were identified in the analysed oils. Multivariate analyses of the chemical constituents of the roots enabled classification of the species into four morphological groups. These forms of analysis represent an aid in identification of further specimens belonging to these species. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This study investigated the composition and antifungal activity against Cladosporium sphaerospermum and Cladosporium cladosporioides of essential oils of leaves of Piper cernuum, Piper diospyrifolium, Piper crassinervium, Piper solmsianum and Piper umbelata and fruits of P. cernuum and P. diospyrifolium. The essentials oils were analyzed by GC-MS and submitted of the antifungal activity tests. The essential oils of fruits from P. cernuum and leaves of P. crassinervium and P. solmsianum showed potential antifungal activity against C. sphaerospermum and C. cladosporioides. In addition, this is the first report of the composition of essential oils of fruits of P. cernuum and P. diospyrifolium.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Oils from Buriti (Mauritia flexuosa), Cupuacu (Theobroma grandiflora), Passion Fruit (Passiflora alata), Andiroba (Carapa gitianensis), Brazilian Nut (Bertholletia excelsa) and Babassu (Orbignya spp.) were evaluated as carbon sources for rhamnolipid production by Pseudomonas aeruginosa LBI. The highest rhamnolipid concentrations were obtained from Brazilian Nut (9.9 l(-1)) and Passion Fruit (9.2 g l(-1)) oils. Surface tension varied from 29.8 to 31.5 mN m(-1), critical micelle concentration from 55 to 163 mg l(-1) and the emulsifying activity was higher against toluene (93-100%) than against kerosene (70-92%). Preliminary characterization of the surfactant mixtures by mass spectrometry revealed the presence of two major components showing m/z of 649 and 503, which corresponded to the dirhamnolipid (Rha(2)C(10)C(10)) and the monorhamnolipid (RhaC(10)C(10)), respectively. The monorhamnolipid detected as the ion of m/z 503 is predominant in all samples analyzed. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The composition of essential oils from leaves, stems and fruits of Piper aduncum, P arboreum and P. tuberculatum was examined by means of GC-MS and alltifungal assay. There was a predominance of monoterpenes in P aduncum and P tuberculatum and of sesquiterpenes in P arboreum. P aduncum showed the richest essential oil composition, including linalool. The essential oils from fruits of P. aduncum and R tuberculatum showed the highest antifungal activity with the MIC of 10 mu g as determined against Cladosporium cladosponoides and C. sphaerospermum, respectively. This is the first report of the composition of essential oils from P. tuberculatum.
Resumo:
A. suite of 10 different marine evaporitic oil samples from Sergipe-Alagoas Basin, Brazil was studied for its biomarker content, in particular its acidic constituents. The oils showed different molecular distributions and relative abundances of n-alkanoic, isoprenoid and hopanoic acids. The observed differences were assigned to the incorporation of immature organic matter in the oils and fractionation along the migration pathway. The diagenetic precursor functionality (alcohol/ether or acid) was proposed based on the comparison of the relative abundances of the neutral and acidic biomarkers (hopanoids, isoprenoids, alkyl-steranes, monoaromatic alkyl-steroids). In the acidic fraction, 3 series of steroid-alkanoic acids and monoaromatic steroid-alkanoic acids (steroid-methanoic, ethanoic and propanoic acids and monoaromatic steroid-methanoic, ethanoic and propanoic acids) were detected, while in the neutral fraction only 2 series of each corresponding class could be observed (methyl and ethyl-steranes and monoaromatic methyl and ethyl-steroids). These carbon shifts suggest that decarboxylation is an important process in the formation of the alkyrsteranes and monoaromatic alkyl-steroids, and we infer that carboxylic acids are the diagenetic precursors of these classes of compounds. When alcohol or ether are the diagenetic precursors (isoprenoids and hopanoids), no significant differences in the molecular distributions between neutral and acidic fractions were observed. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
In this work we report on the use of the Thermal Lens method to verify the evolution of the thermal diffusivity of sunflower and soybean vegetable oils utilized in preparation of twenty five snacks portions. Our results show that the thermal diffusivity for sunflower oil does not change between 1 and 25 portions of fried snacks. By another hand, the soybean thermal diffusivity exhibits a little decrease for higher portion of fried snacks, indicating that for this oil the triglyceride level is reduced as a degradation process.