126 resultados para Network System


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the network reconfiguration context, the challenge nowadays is to improve the system in order to get intelligent systems that are able to monitor the network and produce refined information to support the operator decisions in real time, this because the network is wide, ramified and in some places difficult to access. The objective of this paper is to present the first results of the network reconfiguration algorithm that has been developed to CEMIG-D. The algorithm's main idea is to provide a new network configuration, after an event (fault or study case), based on an initial condition and aiming to minimize the affected load, considering the restrictions of load flow equations, maximum capacity of the lines as well as equipments and substations, voltage limits and system radial operation. Initial tests were made considering real data from the system, provided by CEMIG-D and it reveals very promising results. © 2013 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hydroelectric power plant Hidroltuango represents a major expansion for the Colombian electrical system (with a total capacity of 2400 MW). This paper analyzes the possible interconnections and investments involved in connecting Hidroltuango, in order to strengthen the Colombian national transmission system. A Mixed Binary Linear Programming (MBLP) model was used to solve the Multistage Transmission Network Expansion Planning (MTEP) problem of the Colombian electrical system, taking the N-1 safety criterion into account. The N-1 safety criterion indicates that the transmission system must be expanded so that the system will continue to operate properly if an outage in a system element (within a pre-defined set of contingencies) occurs. The use of a MBLP model guaranteed the convergence with existing classical optimization methods and the optimal solution for the MTEP using commercial solvers. Multiple scenarios for generation and demand were used to consider uncertainties within these parameters. The model was implemented using the algebraic modeling language AMPL and solved using the commercial solver CPLEX. The proposed model was then applied to the Colombian electrical system using the planning horizon of 2018-2025. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GPS precise point positioning (PPP) can provide high precision 3-D coordinates. Combined pseudorange and carrier phase observables, precise ephemeris and satellite clock corrections, together with data from dual frequency receivers, are the key factors for providing such levels of precision (few centimeters). In general, results obtained from PPP are referenced to an arbitrary reference frame, realized from a previous free network adjustment, in which satellite state vectors, station coordinates and other biases are estimated together. In order to obtain consistent results, the coordinates have to be transformed to the relevant reference frame and the appropriate daily transformation parameters must be available. Furthermore, the coordinates have to be mapped to a chosen reference epoch. If a velocity field is not available, an appropriated model, such as NNR-NUVEL-IA, has to be used. The quality of the results provided by this approach was evaluated using data from the Brazilian Network for Continuous Monitoring of the Global Positioning System (RBMC), which was processed using GIPSY-OASIS 11 software. The results obtained were compared to SIRGAS 1995.4 and ITRF2000, and reached precision better than 2cm. A description of the fundamentals of the PPP approach and its application in the integration of regional GPS networks with ITRF is the main purpose of this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluates the influence of different cartographic representations of in-car navigation systems on visual demand, subjective preference, and navigational error. It takes into account the type and complexity of the representation, maneuvering complexity, road layout, and driver gender. A group of 28 drivers (14 male and 14 female) participated in this experiment which was performed in a low-cost driving simulator. The tests were performed on a limited number of instances for each type of representation, and their purpose was to carry out a preliminary assessment and provide future avenues for further studies. Data collected for the visual demand study were analyzed using non-parametric statistical analyses. Results confirmed previous research that showed that different levels of design complexity significantly influence visual demand. Non-grid-like road networks, for example, influence significantly visual demand and navigational error. An analysis of simple maneuvers on a grid-like road network showed that static and blinking arrows did not present significant differences. From the set of representations analyzed to assess visual demand, both arrows were equally efficient. From a gender perspective, women seem to took at the display more than men, but this factor was not significant. With respect to subjective preferences, drivers prefer representations with mimetic landmarks when they perform straight-ahead tasks. For maneuvering tasks, landmarks in a perspective model created higher visual demands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High amylose cross-linked to different degrees with sodium trimetaphosphate by varying base strength (2% or 4%) and contact time (0.5-4 h) was evaluated as non-compacted systems for sodium diclophenac controlled release. The physical properties and the performance of these products for sodium diclophenac controlled release from non-compacted systems were related to the structures generated at each cross-linking degree. For samples at 2% until 2 h the swelling ability, G' and eta* values increased with the cross-linking degree, because the longer polymer chains became progressively more entangled and linked. This increases water uptake and holding, favoring the swelling and resulting in systems with higher viscosities. Additionally, the increase of cross-linking degree should contribute for a more elastic structure. The shorter chains with more inter-linkages formed at higher cross-linking degrees (2%4h and 4%) make water caption and holding difficult, decreasing the swelling, viscosity and elasticity. For 2% samples, the longer drug release time exhibited for 2%4h sample indicates that the increase of swelling and viscosity contribute for a more sustained drug release, but the mesh size of the polymeric network seems to be determinant for the attachment of drug molecules. For the 4% samples, smaller meshes size should determine less sustained release of drug. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cutting analysis is a important and crucial task task to detect and prevent problems during the petroleum well drilling process. Several studies have been developed for drilling inspection, but none of them takes care about analysing the generated cutting at the vibrating shale shakers. Here we proposed a system to analyse the cutting's concentration at the vibrating shale shakers, which can indicate problems during the petroleum well drilling process, such that the collapse of the well borehole walls. Cutting's images are acquired and sent to the data analysis module, which has as the main goal to extract features and to classify frames according to one of three previously classes of cutting's volume. A collection of supervised classifiers were applied in order to allow comparisons about their accuracy and efficiency. We used the Optimum-Path Forest (OPF), Artificial Neural Network using Multi layer Perceptrons (ANN-MLP), Support Vector Machines (SVM) and a Bayesian Classifier (BC) for this task. The first one outperformed all the remaining classifiers. Recall that we are also the first to introduce the OPF classifier in this field of knowledge. Very good results show the robustness of the proposed system, which can be also integrated with other commonly system (Mud-Logging) in order to improve the last one's efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate identification of the nitrogen content in plants is extremely important since it involves economic aspects and environmental impacts, Several experimental tests have been carried out to obtain characteristics and parameters associated with the health of plants and its growing. The nitrogen content identification in plants involves a lot of non-linear parameters and complexes mathematical models. This paper describes a novel approach for identification of nitrogen content thought SPAD index using artificial neural networks (ANN). The network acts as identifier of relationships among, crop varieties, fertilizer treatments, type of leaf and nitrogen content in the plants (target). So, nitrogen content can be generalized and estimated and from an input parameter set. This approach can form the basis for development of an accurate real time system to predict nitrogen content in plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of neural networks to realize some complex nonlinear function makes them attractive for system identification. This paper describes a novel method using artificial neural networks to solve robust parameter estimation problems for nonlinear models with unknown-but-bounded errors and uncertainties. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the network convergence to the equilibrium points. A solution for the robust estimation problem with unknown-but-bounded error corresponds to an equilibrium point of the network. Simulation results are presented as an illustration of the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Induction motors are largely used in several industry sectors. The selection of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this article is to use artificial neural networks for torque estimation with the purpose of best selecting the induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Since proposed approach estimates the torque behavior from the transient to the steady state, one of its main contributions is the potential to also be implemented in control schemes for real-time applications. Simulation results are also presented to validate the proposed approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Esse trabalho tem por objetivo o desenvolvimento de um sistema inteligente para detecção da queima no processo de retificação tangencial plana através da utilização de uma rede neural perceptron multi camadas, treinada para generalizar o processo e, conseqüentemente, obter o limiar de queima. em geral, a ocorrência da queima no processo de retificação pode ser detectada pelos parâmetros DPO e FKS. Porém esses parâmetros não são eficientes nas condições de usinagem usadas nesse trabalho. Os sinais de emissão acústica e potência elétrica do motor de acionamento do rebolo são variáveis de entrada e a variável de saída é a ocorrência da queima. No trabalho experimental, foram empregados um tipo de aço (ABNT 1045 temperado) e um tipo de rebolo denominado TARGA, modelo ART 3TG80.3 NVHB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wood gasification technologies to convert the biomass into fuel gas stand out. on the other hand, producing electrical energy from stationary engine is widely spread, and its application in rural communities where the electrical network doesn't exist is very required. The recovery of exhaust gases (engine) is a possibility that makes the system attractive when compared with the same components used to obtain individual heat such as electric power. This paper presents an energetic alternative to adapt a fixed bed gasifier with a compact cogeneration system in order to cover electrical and thermal demands in a rural area and showing an energy solution for small social communities using renewable fuels. Therefore, an energetic and economical analysis from a cogeneration system producing electric energy, hot and cold water, using wooden gas as fuel from a small-sized gasifier was calculated. The energy balance that includes the energy efficiency (electric generation as well as hot and cold water system; performance coefficient and the heat exchanger, among other items), was calculated. Considering the annual interest rates and the amortization periods, the costs of production of electrical energy, hot and cold water were calculated, taking into account the investment, the operation and the maintenance cost of the equipments. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)