127 resultados para Molybdenum Enzyme
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Various molecular systems are available for epidemiological, genetic, evolutionary, taxonomic and systematic studies of innumerable fungal infections, especially those caused by the opportunistic pathogen C. albicans. A total of 75 independent oral isolates were selected in order to compare Multilocus Enzyme Electrophoresis (MLEE), Electrophoretic Karyotyping (EK) and Microsatellite Markers (Simple Sequence Repeats - SSRs), in their abilities to differentiate and group C. albicans isolates (discriminatory power), and also, to evaluate the concordance and similarity of the groups of strains determined by cluster analysis for each fingerprinting method. Isoenzyme typing was performed using eleven enzyme systems: Adh, Sdh, M1p, Mdh, Idh, Gdh, G6pdh, Asd, Cat, Po, and Lap (data previously published). The EK method consisted of chromosomal DNA separation by pulsed-field gel electrophoresis using a CHEF system. The microsatellite markers were investigated by PCR using three polymorphic loci: EF3, CDC3, and HIS3. Dendrograms were generated by the SAHN method and UPGMA algorithm based on similarity matrices (S(SM)). The discriminatory power of the three methods was over 95%, however a paired analysis among them showed a parity of 19.7-22.4% in the identification of strains. Weak correlation was also observed among the genetic similarity matrices (S(SM)(MLEE) x S(SM)(EK) x S(SM)(SSRs)). Clustering analyses showed a mean of 9 +/- 12.4 isolates per cluster (3.8 +/- 8 isolates/taxon) for MLEE, 6.2 +/- 4.9 isolates per cluster (4 +/- 4.5 isolates/taxon) for SSRs, and 4.1 +/- 2.3 isolates per cluster (2.6 +/- 2.3 isolates/taxon) for EK. A total of 45 (13%), 39(11.2%), 5 (1.4%) and 3 (0.9%) clusters pairs from 347 showed similarity (Si) of 0.1-10%, 10.1-20%, 20.1-30% and 30.1-40%, respectively. Clinical and molecular epidemiological correlation involving the opportunistic pathogen C. albicans may be attributed dependently of each method of genotyping (i.e., MLEE, EK, and SSRs) supplemented with similarity and grouping analysis. Therefore, the use of genotyping systems that give results which offer minimum disparity, or the combination of the results of these systems, can provide greater security and consistency in the determination of strains and their genetic relationships. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Among the nutrients that are essential for the biological nitrogen fixation by soybean plants, molybdenum stands out for being a cofactor of the nitrate reductase, affecting enzymatic activity and, consequently, the nodulation process. The research had as objective to evaluate the effects of molybdenum application on soybean nodulation and nitrate reductase activity. The experiment was conduced in greenhouse, sowing soybean in 12 L pots, with two plants per plot. The treatments consisted of two application via (with the seeds and leaf dressing) and two molybdenum doses (12 and 24 g ha(-1) with the seeds; 30 and 60 g ha(-1) leaf dressing) in ammonium molybdate form, plus the control. The number and dry mass of nodules and nitrogen content in soybean leaves were evaluated. Samples of leaves for the evaluation of nitrate reductase activity were taken at 10 a.m. and 10 p.m. It was concluded that soybean nodulation is affected by Mo dose and application via, resulting in higher number and weight of nodules when it is applied with the seeds. The enzymatic activity of the nitrate reductase is influenced by Mo fertilization and it is higher for leaf dressing with the double of the recommended dose.
Resumo:
A thrombin-like enzyme, named BjussuSP-I, isolated from Bothrops jararacussu snake venom, is an acidic single-chain glycoprotein with M-r = 61,000, pI similar to 3.8 and 6% sugar. BjussuSP-I shows high proteolytic activity upon synthetic substrates, such as S-2238 and S-2288. It also shows procoagulant and kallikrein-like activity, but is unable to act on platelets and plasmin. These activities are inhibited by specific inhibitors of this class of enzymes. The complete cDNA sequence of BjussuSP-I with 696 bp encodes open reading frames of 232 amino acid residues, which conserve the common domains of thrombin-like serine proteases. BjussuSP-I shows a high structural homology with other thrombin-like enzymes from snake venoms where common amino acid residues are identified as those corresponding to the catalytic site and subsites S1, S2 and S3 already reported. In this study, we also demonstrated the importance of N-linked glycans, to improve thrombin-like activity of BjussuSP-I toxin. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Different cytogenetic techniques were used to analyse the chromosomes of Prochilodus lineatus with the main objective of comparing the base composition of A- and B-chromosomes. The results of digestion of chromosomes with 10 different restriction endonucleases (REs), silver staining, CMA(3) staining and C-banding indicated the existence of different classes of highly repetitive DNA in the A-set and also suggested the existence of compositional differences between the chromatin of A- and B-chromosomes. The 5-BrdU incorporation technique showed a late replicating pattern in all B-chromosomes and in some heterochromatic pericentromeric regions of A-chromosomes. The cleavage with RE BamHI produced a band pattern in all chromosomes of P. lineatus which permitted the tentative pairing of homologues in the karyotype of this species. We concluded that the combined use of the above techniques can contribute to the correct identification of chromosomes and the karyotypic analysis in fishes. on the basis of the results, some aspects of chromosome structure and the origin of the B-chromosomes in P. lineatus are discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Cyclodextrin glycosyltransferase (CGTase) is an enzyme that produces cyclodextrins from starch by an intramolecular transglycosylation reaction. Cyclodextrins have been shown to have a number of applications in the food, cosmetic, pharmaceutical, and chemical industries. In the current study, the production of CGTase by Paenibacillus campinasensis strain H69-3 was examined in submerged and solid-state fermentations. P. campinasensis strain H69-3 was isolated from the soil, which grows at 45 C, and is a Gram-variable bacterium. Different substrate sources such as wheat bran, soybean bran, soybean extract, cassava solid residue, cassava starch, corn starch, and other combinations were used in the enzyme production. CGTase activity was highest in submerged fermentations with the greatest production observed at 48-72 h. The physical and chemical properties of CGTase were determined from the crude enzyme produced from submerged fermentations. The optimum temperature was found to be 70-75 degrees C, and the activity was stable at 55 degrees C for 1 h. The enzyme displayed two optimum pH values, 5.5 and 9.0 and was found to be stable between a pH of 4.5 and 11.0.
Resumo:
Botryosphaeran, a new exopolysaccharide from the endophytic fungus Botryosphaeria rhodina MAMB-05, and algal laminarin were hydrolyzed by partially-fractionated enzymes of the beta-glucanolytic complex from Trichoderma harzianum Rifai. beta-Glucanase fractions (F-I and F-II) separated by gel permeation chromatography presented different modes of attack on botryosphaeran and laminarin. Botryosphaeran was hydrolyzed to the extent of 66% (F-I) and 98% (F-II) within 30 min, and its main hydrolysis products were gluco-oligosaccharides of DP >= 4, with lesser amounts of glucose, di- and tri-saccharides. The action of enzyme fractions I and II on laminarin resulted in 15% conversion to glucose, while the percentage of saccharification was radically different (70% for F-I and 25% for F-II). The different product arrays within the polysaccharide hydrolysates can be explained by the difference in the enzymes' specificities within each enzyme fraction, and the molecular structures of the polysaccharides and their complexity.
Resumo:
A fibrinogen-clotting enzyme, Jararacussin-I, was purified from the venom of Bothrops jararacussu by a combination of ion exchange chromatography using Resource 15S resin and affinity chromatography using Benzamidine Sepharose 6B resin. Jararacussin-I displays a molecular mass of 28 kDa as estimated by sodium dodecyl sulphate-PAGE and possesses an isoetectric point of 5.0. The coagulant specific activity of the enzyme was determined to be 45.8 NIH U/mg using bovine fibrinogen as the substrate and the esterase specific activity was determined to be 258.7 U/mg. The protease inhibitors, benzamidine and DTT inhibited the esterase specific activity by 72.4 and 69.7%, respectively. The optimal temperature and pH for the degradation of both chains of fibrinogen and esterase specific activity were determined to be 37 degreesC and 7.4-8.0, respectively. The enzyme was inactivated at both 4 and 75 T. Single crystals of Jararacussin-I were obtained and complete three-dimensional X-ray diffraction data was collected at the Brazilian National Synchrotron Source (LNLS) to a resolution of 2.4 Angstrom. (C) 2002 Published by Elsevier B.V. Ltd.
Resumo:
Branching enzyme catalyzes the formation of alpha-1,6 branch points in either glycogen or starch. We report the 2.3-Angstrom crystal structure of glycogen branching enzyme from Escherichia coli. The enzyme consists of three major domains, an NH2-terminal seven-stranded beta-sandwich domain, a COOH-terminal domain, and a central alpha/beta-barrel domain containing the enzyme active site. While the central domain is similar to that of all the other amylase family enzymes, branching enzyme shares the structure of all three domains only with isoamylase. Oligosaccharide binding was modeled or branching enzyme using the enzyme-oligosaccharide complex structures of various alpha-amylases and cyclodextrin glucanotransferase and residues were implicated in oligosaccharide binding. While most of the oligosaccharides modeled well in the branching enzyme structure, an approximate 50degrees rotation between two of the glucose units was required to avoid steric clashes with Trp(298) of branching enzyme. A similar rotation was observed in the mammalian alpha-amylase structure caused by an equivalent tryptophan residue in this structure. It appears that there are two binding modes for oligosaccharides in these structures depending on the identity and location of this aromatic residue.
Resumo:
We have studied at a molecular level the interaction of heparins on bothropstoxin-1 (BthTx-1), a phospholipase A(2) toxin. The protein was monitored using gel filtration chromatography, dynamic light scattering (DLS), circular dichroism (CD), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and intrinsic tryptophan fluorescence emission (ITFE) spectroscopy. The elution profile of the protein presents a displacement of the protein peak to larger complexes when interacting with higher concentration of heparin. The DLS results shows two R-h at a molar ratio of 1, one to the distribution of the protein and the second for the action of heparin on BthTx-I structures, and a large distribution with the increase of protein. The interaction is accompanied by significant changes in the CD spectra, showing two common features: a decrease in signal at 208 nm (3 and 6 kDa heparins) and an isodichroic point near 226 nm (3 kDa heparin). FTIR spectra indicate that only a few amino acid residues are involved in this interaction. Alterations in the ITFE by binding heparins suggest that the initial binding occurs on the ventral face of BthTx-1. Together, these results add an experimental and structural basis on the action mechanism of the heparins over the phospholipases A(2) and provide a molecular model to elucidate the interaction of the enzyme-heparin complex at a molecular level. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)