35 resultados para Migration and religion
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Haplotypes in the Interleukin 8 Gene and Their Association with Chronic Periodontitis Susceptibility
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Spermiogenesis in scoloplacids is characterized by initial lateral development of the flagellum, nuclear rotation, medial nuclear fossa formation, complex centriolar migration, and cytoplasmic channel formation. The scoloplacid spermiogenesis is similar to those found in Diplomystidae, the most primitive siluriform family. The scoloplacid spermatozoa have all the main characteristics of introsperm. They exhibit a conic head, a symmetric midpiece, a medial flagellum, and no acrosome. The conic forward-elongated nuclei contain homogeneous chromatin. The thin extremity of the nuclei is strongly curved and along its internal face there is a well-developed membranous compartment. The centrioles are completely inside the medial nuclear fossa, perpendicular to each other and with an electron-dense material between them. In a cross view of the midpiece, the mitochondria form a ring surrounding internally the cytoplasmic channel, and in a longitudinal view they are organized in a row along it. Several elongated vesicles are distributed peripherally, mainly concentrated in the mid-piece basal region. The flagellum contains the classical axoneme (9 + 2) and has two lateral projections or fins. The spermatozoa of scoloplacids share several characteristics with those of Auchenipteridae. Since these two families are not phylogenetically related this similarity seems to be due to convergence once both families are, until now, the only known siluriform families with introsperm.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents an approach to integrate an artificial intelligence (AI) technique, concretely rule-based processing, into mobile agents. In particular, it focuses on the aspects of designing and implementing an appropriate inference engine of small size to reduce migration costs. The main goal is combine two lines of agent research, First, the engineering oriented approach on mobile agent architectures, and, second, the AI related approach on inference engines driven by rules expressed in a restricted subset of first-order predicate logic (FOPL). In addition to size reduction, the main functions of this type of engine were isolated, generalized and implemented as dynamic components, making possible not only their migration with the agent, but also their dynamic migration and loading on demand. A set of classes for representing and exchanging knowledge between rule-based systems was also proposed.
Resumo:
Objective and design: To investigate the effect of galectin-1 (Gal-1) and -3 (Gal-3) on leukocyte migration and analyze the expression of both galectins in inflammatory cells using a model of rat peritonitis.Material or Subjects: Sprague-Dawley rats (n = 4 per group).Treatment: Peritonitis was induced in animals through intraperitoneal injection of carrageenin (1.5 mg/kg) and rat mesenteries were analyzed at different time points (0, 4, 24 and 48h). For pharmacological treatment, rats received intravenous injection of Gal-1 or -3 (3 mu g/kg) followed by carrageenin.Methods: Western blotting and immunoelectron microscopy analysis. Statistical analysis was performed using ANOVA followed by Bonferroni test.Results: Pharmacological treatment with Gal-1, but not Gal-3, inhibited (similar to 50%) leukocyte recruitment into the peritoneal cavity at 4h time-point. In this early phase, immunogold staining of mesenteries showed a diminished Gal-3 expression in degranulated mast cells and Gal-1 in transmigrated neutrophils (similar to 20% reduction compared to intravascular cells). In the later phases (24 and 48 h), leukocyte turnover was associated with augmented Gal-1 expression in neutrophils and macrophages and Gal-3 in mast cells and macrophages.Conclusions: These results point to a balanced expression of cell-associated-Gal-1/Gal-3 and might impact on the development of new therapeutic strategies for inflammatory diseases.
Resumo:
The recent appreciation of the role played by endogenous counterregulatory mechanisms in controlling the outcome of the host inflammatory response requires specific analysis of their spatial and temporal profiles. In this study, we have focused on the glucocorticoid-regulated anti-inflammatory mediator annexin 1. Induction of peritonitis in wild-type mice rapidly (4 h) produced the expected signs of inflammation, including marked activation of resident cells (e.g., mast cells), migration of blood-borne leukocytes, mirrored by blood neutrophilia. These changes subsided after 48-96 h. In annexin 1null mice, the peritonitis response was exaggerated (∼40% at 4 h), with increased granulocyte migration and cytokine production. In blood leukocytes, annexin 1 gene expression was activated at 4, but not 24, h postzymosan, whereas protein levels were increased ai both time points. Locally, endothelial and mast cell annexin 1 gene expression was not detectable in basal conditions, whereas it was switched on during the inflammatory response. The significance of annexin 1 system plasticity in the anti-inflammatory properties of dexamethasone was assessed. Clear induction of annexin 1 gene in response to dexamethasone treatment was evident in the circulating and migrated leukocytes, and in connective tissue mast cells; this was associated with the steroid failure to inhibit leukocyte trafficking, cytokine synthesis, and mast cell degranulation in the annexin 1null mouse. In conclusion, understanding how inflammation is brought under control will help clarify the complex interplay between pro- and anti-inflammatory pathways operating during the host response to injury and infection. Copyright © 2006 by The American Association of Immunologists, Inc.
Resumo:
Migration of components from plastic packaging into foodstuffs or into medicines is a very important issue, concerning public health. Using experimental techniques, like gas chromatography-mass spectrometry, these essays measure total migration and specific migration of components from plastic packaging. This work presents an explanation and applications of a numerical technique tool for this measurement, allowing the comprehension of the diffusion process and the estimate of component migration in difficult or impractical measurements. As an application example, the non-uniform influence of initial concentration profile on the migration is presented, demonstrating the necessity of this profile determination for high quality considerations on involved metrology.
Resumo:
Studies of the hemoglobin pattern in Brazilian reptiles are important for determining ecological and phylogenetic relationships, but they are scarce. Peripheral blood samples were obtained from 7 males and 18 females of Rhinoclemmys punctularia. The hematological profile was based on the total hemoglobin and hematocrit values. The hemoglobin profile was obtained using electrophoretic procedures at different pH, isoelectric focusing, globin chain electrophoresis, and HPLC. The hematocrit (31 ± 2%) and total hemoglobin (7.5 ± 0.2 g/dL) values did not indicate gender variations. Alkaline pH electrophoresis of the total blood samples treated with 1% saponin demonstrated the presence of four well-defined hemoglobin fractions, one major component (fraction I), showing cathodic migration and three others faster than fraction I with anodic migration. When the samples were precipitated with chloroform, only two hemoglobin fractions were observed, similar to fractions I and III from the first procedure. Isoelectric focusing and HPLC showed the same pattern. With acid and neutral pH electrophoresis, two fractions with anodic migration were observed. The globin chain identification at alkaline pH showed two fractions, but four fractions were observed at acidic pH, suggesting that different polypeptide chains are involved in the hemoglobin molecule. The chromatographic separation of the total blood sample demonstrated that the major fraction comprised 81.9% and the minor 18.1%. The results obtained demonstrated a similarity between these hemoglobin components and those of some Chelidae reported in the literature for both land and aquatic animals, reflecting the adaptation to environmental conditions. ©FUNPEC-RP.
Resumo:
In a previous study, we evaluated the findings related to the use of resorbable collagen membranes in humans along with DFDBA (demineralized freeze-dried bone allograft). The aim of this subsequent study was to histometrically evaluate in dogs, the healing response of gingival recessions treated with collagen membrane + DFDBA (Guided Tissue Regeneration, GTR) compared to a coronally positioned flap (CPF). Two types of treatment were randomly carried out in a split-mouth study. Group 1 was considered as test (GTR: collagen membrane + DFDBA), whereas Group 2 stood for the control (only CPF). The dogs were given chemical bacterial plaque control with 0.2% chlorhexidine digluconate during a 90-day repair period. Afterwards, the animals were killed to obtain biopsies and histometric evaluation of the process of cementum and bone formation, epithelial migration and gingival level. A statistically significant difference was found between groups with a larger extension of neoformed cementum (GTR = 32.72%; CPF = 18.82%; p = 0.0004), new bone (GTR = 23.20%; CPF = 09.90%; p = 0.0401) and with a smaller area of residual gingival recession in the test group (GTR = 50.69%; CPF = 59.73%; p = 0.0055) compared to the control group. The only item assessed that showed no statistical difference was epithelial proliferation on the root surface, with means of 15.14% for the GTR group and 20.34% for the CPF group (p = 0.0890). Within the limits of this study we concluded that the treatment of gingival recession defects with GTR, associating collagen membrane with DFDBA, showed better outcomes in terms of a larger extension of neoformed cementum and bone, as well as in terms of a smaller proportion of residual recessions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A central question in evolutionary biology is how interactions between organisms and the environment shape genetic differentiation. The pathogen Batrachochytrium dendrobatidis (Bd) has caused variable population declines in the lowland leopard frog (Lithobates yavapaiensis); thus, disease has potentially shaped, or been shaped by, host genetic diversity. Environmental factors can also influence both amphibian immunity and Bd virulence, confounding our ability to assess the genetic effects on disease dynamics. Here, we used genetics, pathogen dynamics, and environmental data to characterize L.yavapaiensis populations, estimate migration, and determine relative contributions of genetic and environmental factors in predicting Bd dynamics. We found that the two uninfected populations belonged to a single genetic deme, whereas each infected population was genetically unique. We detected an outlier locus that deviated from neutral expectations and was significantly correlated with mortality within populations. Across populations, only environmental variables predicted infection intensity, whereas environment and genetics predicted infection prevalence, and genetic diversity alone predicted mortality. At one locality with geothermally elevated water temperatures, migration estimates revealed source-sink dynamics that have likely prevented local adaptation. We conclude that integrating genetic and environmental variation among populations provides a better understanding of Bd spatial epidemiology, generating more effective conservation management strategies for mitigating amphibian declines.