34 resultados para MHC I peptides
Resumo:
The venom of the Neotropical social wasp Protopolybia exigua(Saussure) was fractionated by RP-HPLC resulting in the elution of 20 fractions. The homogeneity of the preparations were checked out by using ESI-MS analysis and the fractions 15, 17 and 19 (eluted at the most hydrophobic conditions) were enough pure to be sequenced by Edman degradation chemistry, resulting in the following sequences:Protopolybia MPI I-N-W-L-K-L-G-K-K-V-S-A-I-L-NH2 Protopolybia-MP II I-N-W-K-A-I-I-E-A-A-K-Q-A-L-NH2 Protopolybia-MP III I-N-W-L-K-L-G-K-A-V-I-D-A-L-NH2All the peptides were manually synthesized on-solid phase and functionally characterized. Protopolybia-MP I is a hemolytic mastoparan, probably acting on mast cells by assembling in plasma membrane, resulting in pore formation; meanwhile, the peptides Protopolybia-MP II and -MP III were characterized as a non-hemolytic mast cell degranulator toxins, which apparently act by virtue of their binding to G-protein receptor, activating the mast cell degranulation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Four antimicrobial peptides were purified from Royal Jelly of honeybees, by using reverse phase-HPLC and sequenced by using Q-Tof-MS/MS: PFKLSLHL-NH2 (Jelleine-I), TPFKLSLHL-NH2 (Jelleine-II), EPFKLSLHL-NH2 (Jelleine-III), and TPFKLSLH-NH2 (Jelleine-IV). The peptides were synthesized on-solid phase, purified and submitted to different biological assays: antimicrobial activity, mast cell degranulating activity and hemolysis. The Jelleines-I-III presented exclusively antimicrobial activities against yeast, Gram+ and Gram- bacteria; meanwhile, Jelleine-IV was not active in none of the assays performed. These peptides do not present any similarity with the other antimicrobial peptides from the honeybees; they are produced constitutively by the workers and secreted into Royal Jelly. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The venom of the neotropical social wasp Agelaia pallipes pallipes was fractionated by RP-HPLC resulting in the elution of seven fractions; the last two were re-fractionated under RP-HPLC by using isocratic elution conditions and the purity of the fractions were confirmed by using ESI-MS analysis. Both fractions are constituted of peptide components, which were sequenced by Edman degradation chemistry, resulting in the following sequences:Protonectin I-L-G-T-I-L-G-L-L-K-G-L-NH2Agelaia-MP I-N-W-L-K-L-G-K-A-I-I-D-A-L-NH2Both peptides are manually synthesized on solid-phase and functionally characterized by using Wistar rats cells. Protonectin is a non-hemolytic chemotactic peptide for polymorphonucleated leukocytes (PMNL), presenting some mast cell degranulating activity and potent antimicrobial action both against Gram-positive and Gram-negative bacteria. Agelaia-MP was characterized as a hemolytic mast cell degranulator toxin, presenting a poor antimicrobial action and no chemotaxis for PMNL. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bothropstoxin-I (BthTX-1), a Lys49 phospholipase A(2) homolog with no apparent catalytic activity, was first isolated from Bothrops jararacussu snake venom and completely sequenced in this laboratory. It is a 121-amino-acid single polypeptide chain, highly myonecrotic, despite its inability to catalyze hydrolysis of egg yolk phospholipids, and has 14 half-cystine residues identified at positions 27, 29, 44, 45, 50, 51, 61, 84, 91, 96, 98, 105, 123, and 131 (numbering according to the conventional alignment including gaps, so that the last residue is Cys 131). In order to access its seven disulfide bridges, two strategies were followed: (1) Sequencing of isolated peptides from (tryptic + SV8) and chymotryptic digests by Edman-dansyl degradation; (2) crystallization of the protein and determination of the crystal structure so that at least two additional disulfide bridges could be identified in the final electron density map. Identification of the disulfide-containing peptides from the enzymatic digests was achieved following the disappearance of the original peptides from the HPLC profile after reduction and carboxymethylation of the digest. Following this procedure, four bridges were initially identified from the tryptic and SV8 digests: Cys50-Cys131, Cys51-Cys98, Cys61-Cys91, and Cys84-Cys96. From the chymotryptic digest other peptides were isolated either containing some of the above bridges, therefore confirming the results from the tryptic digest, or presenting a new bond between Cys27 and Cys123. The two remaining bridges were identified as Cys29-Cys45 and Cys44-Cys105 by determination of the crystal structure, showing that BthTX-1 disulfide bonds follow the normal pattern of group II PLA(2)s.
Resumo:
Bothropstoxin-I (BthTX-I), a Lys49 phospholipase A2 homolog with no apparent catalytic activity, was first isolated from Bothrops jararacussu snake venom and completely sequenced in this laboratory. It is a 121-amino-acid single polypeptide chain, highly myonecrotic, despite its inability to catalyze hydrolysis of egg yolk phospholipids, and has 14 half-cystine residues identified at positions 27, 29, 44, 45, 50, 51, 61, 84, 91, 96, 98, 105, 123, and 131 (numbering according to the conventional alignment including gaps, so that the last residue is Cys 131). In order to access its seven disulfide bridges, two strategies were followed: (1) Sequencing of isolated peptides from (tryptic + SV8) and chymotryptic digests by Edman-dansyl degradation; (2) crystallization of the protein and determination of the crystal structure so that at least two additional disulfide bridges could be identified in the final electron density map. Identification of the disulfide-containing peptides from the enzymatic digests was achieved following the disappearance of the original peptides from the HPLC profile after reduction and carboxymethylation of the digest. Following this procedure, four bridges were initially identified from the tryptic and SV8 digests: Cys50-Cysl31, Cys51-Cys98, Cys61-Cys91, and Cys84-Cys96. From the chymotryptic digest other peptides were isolated either containing some of the above bridges, therefore confirming the results from the tryptic digest, or presenting a new bond between Cys27 and Cys 123. The two remaining bridges were identified as Cys29-Cys45 and Cys44-Cysl05 by determination of the crystal structure, showing that BthTX-I disulfide bonds follow the normal pattern of group II PLA2s. © 2001 Plenum Publishing Corporation.
Resumo:
This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A2 (PLA2s) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing Mr ∼ 14,000 for the monomer and 28,000 Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA2s from snake venoms, MTX-I belonging to Asp49 PLA2 class, enzymatically active, and MTX-II to Lys49 PLA2s, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA2 and anticoagulant activities, corroborating the importance of residue His48 and Ca2+ ions for the enzymatic catalysis. Both PLA2s induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA2 proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer. © 2008 Elsevier Inc. All rights reserved.
Resumo:
Peptides isolated from animal venoms have shown the ability to regulate pancreatic beta cell function. Characterization of wasp venoms is important, since some components of these venoms present large molecular variability, and potential interactions with different signal transduction pathways. For example, the well studied mastoparan peptides interact with a diversity of cell types and cellular components and stimulate insulin secretion via the inhibition of ATP dependent K + (K ATP) channels, increasing intracellular Ca 2+ concentration. In this study, the insulin secretion of isolated pancreatic islets from adult Swiss mice was evaluated in the presence of synthetic Agelaia MP-I (AMP-I) peptide, and some mechanisms of action of this peptide on endocrine pancreatic function were characterized. AMP-I was manually synthesized using the Fmoc strategy, purified by RP-HPLC and analyzed using ESI-IT-TOF mass spectrometry. Isolated islets were incubated at increasing glucose concentrations (2.8, 11.1 and 22.2 mM) without (Control group: CTL) or with 10 μM AMP-I (AMP-I group). AMP-I increased insulin release at all tested glucose concentrations, when compared with CTL (P < 0.05). Since molecular analysis showed a potential role of the peptide interaction with ionic channels, insulin secretion was also analyzed in the presence of 250 μM diazoxide, a K ATP channel opener and 10 μM nifedipine, a Ca 2+ channel blocker. These drugs abolished insulin secretion in the CTL group in the presence of 2.8 and 11.1 mM glucose, whereas AMP-I also enhanced insulin secretory capacity, under these glucose conditions, when incubated with diazoxide and nifedipine. In conclusion, AMP-I increased beta cell secretion without interfering in K ATP and L-type Ca 2+ channel function, suggesting a different mechanism for this peptide, possibly by G protein interaction, due to the structural similarity of this peptide with Mastoparan-X, as obtained by modeling. © 2012 Elsevier Ltd.
Resumo:
Cellobiohydrolases hydrolyze cellulose releasing cellobiose units. They are very important for a number of biotechnological applications, such as, for example, production of cellulosic ethanol and cotton fiber processing. The Trichoderma cellobiohydrolase I (CBH1 or Cel7A) is an industrially important exocellulase. It exhibits a typical two domain architecture, with a small C-terminal cellulose-binding domain and a large N-terminal catalytic core domain, connected by an O-glycosylated linker peptide. The mechanism by which the linker mediates the concerted action of the two domains remains a conundrum. Here, we probe the protein shape and domain organization of the CBH1 of Trichoderma harzianum (ThCel7A) by small angle X-ray scattering (SAXS) and structural modeling. Our SAXS data shows that ThCel7A linker is partially-extended in solution. Structural modeling suggests that this linker conformation is stabilized by inter- and intra-molecular interactions involving the linker peptide and its O-glycosylations. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Biofísica Molecular - IBILCE
Resumo:
Pós-graduação em Fisiopatologia em Clínica Médica - FMB
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)