188 resultados para Lippmann-Schwinger equation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compare phenomenological values of the frozen QCD running coupling constant (alpha(s)) with two classes of infrared finite solutions obtained through nonperturbative Schwinger-Dyson equations. We use these same solutions with frozen coupling constants as well as their respective nonperturbative gluon propagators to compute the QCD prediction for the asymptotic pion form factor. Agreement between theory and experiment on alpha(s)(0) and F (pi)(Q(2)) is found only for one of the Schwinger-Dyson equation solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the operator formalism, we obtain the bosonic representation for the free fermion field satisfying an equation of motion with higher-order derivatives. Then, we consider the operator solution of a generalized Schwinger model with higher-derivative coupling. Since the increasing of the derivative order implies the introduction of an equivalent number of extra fermionic degrees of freedom, the mass acquired by the gauge field is bigger than the one for the standard two-dimensional QED. An analysis of the problem from the functional integration point of view corroborates the findings of canonical quantization, and corrects certain results previously announced in the literature on the basis of Fujikawa's technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation scheme produces the appearance of ghost poles in the propagators. In this paper the coupled system of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem is investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. In particular, it does not affect the appearance of the ghost poles in the propagators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the solutions obtained for the gluon propagador in Landau gauge within two distinct approximations for the Schwinger-Dyson equations (SDE). The first, named Mandelstam's approximation, consist in neglecting all contributions that come from fermions and ghosts fields while in the second, the ghosts fields are taken into account leading to a coupled system of integral equations. In both cases we show that a dynamical mass for the gluon propagator can arise as a solution. © 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Física - IFT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Schwinger quantum action principle is a dynamic characterization of the transformation functions and is based on the algebraic structure derived from the kinematic analysis of the measurement processes at the quantum level. As such, this variational principle, allows to derive the canonical commutation relations in a consistent way. Moreover, the dynamic pictures of Schrödinger, Heisenberg and a quantum Hamilton-Jacobi equation can be derived from it. We will implement this formalism by solving simple systems such as the free particle, the quantum harmonic oscillator and the quantum forced harmonic oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we describe an experimental setup in which an electric current is used to determine the angular velocity attained by a plate rotating around a shaft in response to a torque applied for a given period. Based on this information, we show how the moment of inertia of a plate can be determined using a procedure that differs considerably from the ones most commonly used, which generally involve time measurements. Some experimental results are also presented which allow one to determine parameters such as the exponents and constant of the conventional equation of a plate's moment of inertia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fractional generalized Langevin equation (FGLE) is proposed to discuss the anomalous diffusive behavior of a harmonic oscillator driven by a two-parameter Mittag-Leffler noise. The solution of this FGLE is discussed by means of the Laplace transform methodology and the kernels are presented in terms of the three-parameter Mittag-Leffler functions. Recent results associated with a generalized Langevin equation are recovered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work summarizes the HdHr group of Hermitian integration algorithms for dynamic structural analysis applications. It proposes a procedure for their use when nonlinear terms are present in the equilibrium equation. The simple pendulum problem is solved as a first example and the numerical results are discussed. Directions to be pursued in future research are also mentioned. Copyright (C) 2009 H.M. Bottura and A. C. Rigitano.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exact analytic solutions are found to the Dirac equation for a combination of Lorentz scalar and vector Coulombic potentials with additional non-Coulombic parts. An appropriate linear combination of Lorentz scalar and vector non-Coulombic potentials, with the scalar part dominating, can be chosen to give exact analytic Dirac wave functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exact bounded solutions for a fermion subject to exponential scalar potential in 1 + 1 dimensions are found in closed form. We discuss the existence of zero modes which are related to the ultrarelativistic limit of the Dirac equation and are responsible for the induction of a fractional fermion number on the vacuum.