241 resultados para Lattice-binary parameter
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Many efforts are currently oriented toward extracting more information from ocean color than the chlorophyll a concentration. Among biological parameters potentially accessible from space, estimates of phytoplankton cell size and light absorption by colored detrital matter (CDM) would lead to an indirect assessment of major components of the organic carbon pool in the ocean, which would benefit oceanic carbon budget models. We present here 2 procedures to retrieve simultaneously from ocean color measurements in a limited number of bands, magnitudes, and spectral shapes for both light absorption by CDM and phytoplankton, along with a size parameter for phytoplankton. The performance of the 2 procedures was evaluated using different data sets that correspond to increasing uncertainties: ( 1) measured absorption coefficients of phytoplankton, particulate detritus, and colored dissolved organic matter ( CDOM) and measured chlorophyll a concentrations and ( 2) SeaWiFS upwelling radiance measurements and chlorophyll a concentrations estimated from global algorithms. In situ data were acquired during 3 cruises, differing by their relative proportions in CDM and phytoplankton, over a continental shelf off Brazil. No local information was introduced in either procedure, to make them more generally applicable. Over the study area, the absorption coefficient of CDM at 443 nm was retrieved from SeaWiFS radiances with a relative root mean square error (RMSE) of 33%, and phytoplankton light absorption coefficients in SeaWiFS bands ( from 412 to 510 nm) were retrieved with RMSEs between 28% and 33%. These results are comparable to or better than those obtained by 3 published models. In addition, a size parameter of phytoplankton and the spectral slope of CDM absorption were retrieved with RMSEs of 17% and 22%, respectively. If these methods are applied at a regional scale, the performances could be substantially improved by locally tuning some empirical relationships.
Resumo:
This work deals with the Priestley-Taylor model for evapotranspiration in different grown stages of a bean crop. Priestley and Taylor derived a practical Formulation for energy partitioning between the sensible and latent heat fluxes through the a parameter. Bowen ratio energy balance (BREB) was carried out for daily sensible and latent heat flux estimations in three different crop stages. Mean daily values of Priestley-Taylor a parameter were determined for eleven days during the crop cycle. Diurnal variation patterns of a are presented for the growing, flowering and graining periods. The mean values of 1.13 +/- 0.33, 1.26 +/- 0.74, 1.22 +/- 0.55 were obtained for a day in the growing, in the flowering and for graining periods, respectively. Eleven days values of a are shown and gave a mean value of 1.23 +/- 0.10 which agree on the reported literature.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aim of this study was to estimate the components of variance and genetic parameters for the visual scores which constitute the Morphological Evaluation System (MES), such as body structure (S), precocity (P) and musculature (M) in Nellore beef-cattle at the weaning and yearling stages, by using threshold Bayesian models. The information used for this was gleaned from visual scores of 5,407 animals evaluated at the weaning and 2,649 at the yearling stages. The genetic parameters for visual score traits were estimated through two-trait analysis, using the threshold animal model, with Bayesian statistics methodology and MTGSAM (Multiple Trait Gibbs Sampler for Animal Models) threshold software. Heritability estimates for S, P and M were 0.68, 0.65 and 0.62 (at weaning) and 0.44, 0.38 and 0.32 (at the yearling stage), respectively. Heritability estimates for S, P and M were found to be high, and so it is expected that these traits should respond favorably to direct selection. The visual scores evaluated at the weaning and yearling stages might be used in the composition of new selection indexes, as they presented sufficient genetic variability to promote genetic progress in such morphological traits.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study described the formulation and characterisation of the viscoelastic, mechanical and mucoadhesive properties of thermoresponsive, binary polymeric systems composed of poloxamer (P407) and poly(acrylic acid, C974P) that were designed for use as a drug delivery platform within the oral cavity. Monopolymeric and binary polymeric formulations were prepared containing 10, 15 and 20% (w/w) poloxamer (407) and 0.10-0.25% (w/w) poly(acrylic acid, 934P). The flow theological and viscoelastic properties of the formulations were determined using controlled stress and oscillatory rheometry, respectively, the latter as a function of temperature. The mechanical and mucoadhesive properties (namely the force required to break the bond between the formulation and a pre-hydrated mucin disc) were determined using compression and tensile analysis, respectively. Binary systems composed of 10% (w/w) P407 and C934P were elastoviscous, were easily deformed under stress and did not exhibit mucoadhesion. Formulations containing 15 or 20% (w/w) Pluronic P407 and C934P exhibited a sol-gel temperature T(sol/gel), were viscoelastic and offered high elasticity and resistance to deformation at 37 degrees C. Conversely these formulations were elastoviscous and easily deformed at temperatures below the sol-gel transition temperature. The sol-gel transition temperatures of systems containing 15% (w/w) P407 were unaffected by the presence of C934P; however, increasing the concentration of C934P decreased the T(sol/gel) in formulations containing 20%(w/w) P407. Rheological synergy between P407 and C934P at 37 degrees C was observed and was accredited to secondary interactions between these polymers, in addition to hydrophobic interactions between P407 micelles. Importantly, formulations composed of 20% (w/w) P407 and C934P exhibited pronounced mucoadhesive properties. The ease of administration (below the T(sol/gel)) in conjunction with the viscoelastic (notably high elasticity) and mucoadhesive properties (at body temperature) render the formulations composed of 20% (w/w) P407 and C934P as potentially useful platforms for mucoadhesive, controlled topical drug delivery within the oral cavity. (c) 2009 Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The study of superconducting samples in mesoscopic scale presented a remarkable improvement during the last years. Certainly, such interest is based on the fact that when the size of the samples is close to the order of the temperature dependent coherence length xi(T), and/or the size of the penetration depth lambda(T), there are some significant modifications on the physical properties of the superconducting state. This contribution tests the square cross-section size limit for the occurrence (or not) of vortices in mesoscopic samples of area L-2, where L varies discretely from 1 xi(0) to 8 xi(0).The time dependent Ginzburg-Landau (TDGL) equations approach is used upon taking the order parameter and the local magnetic field invariant along the z-direction. The vortex configurations at the equilibrium can be obtained from the TDGL equations for superconductivity as the system relaxes to the stationary state.The obtained results show that the limit of vortex penetration is for the square sample of size 3 xi(0) x 3 xi(0) in which only a single vortex are allowed into the sample. For smaller specimens, no vortex can be formed and the field entrance into the sample is continuous and the total flux penetration occurs at higher values of H/H-c2(0), where H-c2(T) is the upper critical field. Otherwise, for larger samples different vortices patterns can be observed depending on the sample size. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The discovery of the superconductivity of MgB(2) was of great importance, because this material is one of the few known binary compounds and has one of the highest critical temperatures (39 degrees K). As MgB(2) is a granular compound, it is fundamentally important to understand the mechanisms of the interaction of the defects and the crystalline lattice, in addition to the eventual processes involving the grain boundaries that compose the material. In this sense, the mechanical spectroscopy measurements constitute a powerful tool for this study, because through them we can obtain important information about phase transitions, the behavior of interstitial or substitutional elements, dislocations, grain boundaries, diffusion, instabilities, and other imperfections of the lattice. For this paper, the samples were prepared using the PIT method and were characterized by density, X-ray diffraction, scanning electron microscopy, electric resistivity, magnetization, and mechanical spectroscopy. The samples were measured in their as-cast condition and after an ultra-high-vacuum heat treatment. The results showed complex spectra, in which were identified relaxation processes due to dislocation movement, interaction among interstitial elements and dislocations, auto-diffusion, and movement of grain boundaries. Some of these processes disappeared with the heat treatment.