32 resultados para Industrial network security
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose - The purpose of this paper is to provide information on lubricant contamination by biodiesel using vibration and neural network.Design/methodology/approach - The possible contamination of lubricants is verified by analyzing the vibration and neural network of a bench test under determinated conditions.Findings - Results have shown that classical signal analysis methods could not reveal any correlation between the signal and the presence of contamination, or contamination grade. on other hand, the use of probabilistic neural network (PNN) was very successful in the identification and classification of contamination and its grade.Research limitations/implications - This study was done for some specific kinds of biodiesel. Other types of biodiesel could be analyzed.Practical implications Contamination information is presented in the vibration signal, even if it is not evident by classical vibration analysis. In addition, the use of PNN gives a relatively simple and easy-to-use detection tool with good confidence. The training process is fast, and allows implementation of an adaptive training algorithm.Originality/value - This research could be extended to an internal combustion engine in order to verify a possible contamination by biodiesel.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
One of the major problems facing Blast Furnaces is the occurrence of cracks in taphole mud, as the underlying causes are not easily identifiable. The absence of this knowledge makes it difficult the use of conventional techniques for predictability and mitigation. This paper will address the application of Probabilistic Neural Network using the Matlab software as a means to detect and control such cracks. The most relevant BF operational variables were picked through the statistic tool "Principal Component Analysis - PCA." Based upon the selection of these variables a probabilistic neural network was built. A set of BF operational data, consisting of 30 controlling variables, was divided into 2 groups, one of which for network training, and the other one to validate the neural network. The neural network got 98% of the cases right. The results show the effectiveness of this tool for crack prediction in relation to clay intrinsic properties and as a result of the fluctuation in operational variables.
Resumo:
This work describes a ludic proposal for programming learning of industrial robots to be developed by groups of engineering students. Two projects are presented: Tic-tac-toe Opponent Robot and Environmentalist Robot. The first project use competitive search techniques of the Artificial Intelligence, computational vision, electronic and pneumatic concepts for ability decision making for a robotic agent on the tic-tae-toe game. The second project consists of a game that contains a questions and answers database about environmental themes. An algorithm selects the group of questions to be answered by the player, analyses the answers and sends the result to a industrial robot through serial port. According with the player performance, the robot makes congratulation movements and giving a gift to the winner player. Otherwise, the robot makes movements, disapproving the player performance.
Resumo:
Internal and external computer network attacks or security threats occur according to standards and follow a set of subsequent steps, allowing to establish profiles or patterns. This well-known behavior is the basis of signature analysis intrusion detection systems. This work presents a new attack signature model to be applied on network-based intrusion detection systems engines. The AISF (ACME! Intrusion Signature Format) model is built upon XML technology and works on intrusion signatures handling and analysis, from storage to manipulation. Using this new model, the process of storing and analyzing information about intrusion signatures for further use by an IDS become a less difficult and standardized process.
Resumo:
Many electronic drivers for the induction motor control are based on sensorless technologies. The proposal of this work Is to present an alternative approach of speed estimation, from transient to steady state, using artificial neural networks. The inputs of the network are the RMS voltage, current and speed estimated of the induction motor feedback to the input with a delay of n samples. Simulation results are also presented to validate the proposed approach. © 2006 IEEE.
Resumo:
This work describes a hardware/software co-design system development, named IEEE 1451 platform, to be used in process automation. This platform intends to make easier the implementation of IEEE standards 1451.0, 1451.1, 1451.2 and 1451.5. The hardware was built using NIOS II processor resources on Alteras Cyclone II FPGA. The software was done using Java technology and C/C++ for the processors programming. This HW/SW system implements the IEEE 1451 based on a control module and supervisory software for industrial automation. © 2011 Elsevier B.V.
Resumo:
In the past few years, vehicular ad hoc networks(VANETs) was studied extensively by researchers. VANETs is a type of P2P network, though it has some distinct characters (fast moving, short lived connection etc.). In this paper, we present several limitations of current trust management schemes in VANETs and propose ways to counter them. We first review several trust management techniques in VANETs and argue that the ephemeral nature of VANETs render them useless in practical situations. We identify that the problem of information cascading and oversampling, which commonly arise in social networks, also adversely affects trust management schemes in VANETs. To the best of our knowledge, we are the first to introduce information cascading and oversampling to VANETs. We show that simple voting for decision making leads to oversampling and gives incorrect results in VANETs. To overcome this problem, we propose a novel voting scheme. In our scheme, each vehicle has different voting weight according to its distance from the event. The vehicle which is more closer to the event possesses higher weight. Simulations show that our proposed algorithm performs better than simple voting, increasing the correctness of voting. © 2012 Springer Science + Business Media, LLC.
Resumo:
Fieldbus communications networks are a fundamental part of modern industrial automation technique. This paperwork presents an application of project-based learning (PBL) paradigm to help electrical engineering students grasp the major concepts of fieldbus networks, while attending a one-term long, elective microcontroller course. © 2012 IEEE.
Resumo:
This paper presents a new method to estimate hole diameters and surface roughness in precision drilling processes, using coupons taken from a sandwich plate composed of a titanium alloy plate (Ti6Al4V) glued onto an aluminum alloy plate (AA 2024T3). The proposed method uses signals acquired during the cutting process by a multisensor system installed on the machine tool. These signals are mathematically treated and then used as input for an artificial neural network. After training, the neural network system is qualified to estimate the surface roughness and hole diameter based on the signals and cutting process parameters. To evaluate the system, the estimated data were compared with experimental measurements and the errors were calculated. The results proved the efficiency of the proposed method, which yielded very low or even negligible errors of the tolerances used in most industrial drilling processes. This pioneering method opens up a new field of research, showing a promising potential for development and application as an alternative monitoring method for drilling processes. © 2012 Springer-Verlag London Limited.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em História - FCLAS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)