166 resultados para Immobilized enzymes
Resumo:
The industrial production of antibiotics with filamentous fungi is usually carried out in conventional aerated and agitated tank fermentors. Highly viscous non-Newtonian broths are produced and a compromise must be found between convenient shear stress and adequate oxygen transfer. In this work, cephalosporin C production by bioparticles of immobilized cells of Cephalosporium acremonium ATCC 48272 was studied in a repeated batch tower bioreactor as an alternative to the conventional process. Also, gas-liquid oxygen transfer volumetric coefficients, k(L)a, were determined at various air flow-rates and alumina contents in the bioparticle. The bioparticles were composed of calcium alginate (2.0% w/w), alumina (<44 micra), cells, and water. A model describing the cell growth, cephalosporin C production, oxygen, glucose, and sucrose consumption was proposed. To describe the radial variation of oxygen concentration within the pellet, the reaction-diffusion model forecasting a dead core bioparticle was adopted. The k(L)a measurements with gel beads prepared with 0.0, 1.0, 1.5, and 2.0% alumina showed that a higher k(L)a value is attained with 1.5 and 2.0%. An expression relating this coefficient to particle density, liquid density, and air velocity was obtained and further utilized in the simulation of the proposed model. Batch, followed by repeated batch experiments, were accomplished by draining the spent medium, washing with saline solution, and pouring fresh medium into the bioreactor. Results showed that glucose is consumed very quickly, within 24 h, followed by sucrose consumption and cephalosporin C production. Higher productivities were attained during the second batch, as cell concentration was already high, resulting in rapid glucose consumption and an early derepression of cephalosporin C synthesizing enzymes. The model incorporated this improvement predicting higher cephalosporin C productivity. (C) 2004 Wiley Periodicals, Inc.
Resumo:
The extracellular tannase from Emericela nidulans was immobilized on different ionic and covalent supports. The derivatives obtained using DEAE-Sepharose and Q-Sepharose were thermally stable from 60 to 75 °C, with a half life (t50) >24 h at 80 °C at pH 5. 0. The glyoxyl-agarose and amino-glyoxyl derivatives showed a thermal stability which was lower than that observed for ionic supports. However, when the stability to pH was considered, the derivatives obtained from covalent supports were more stable than those obtained from ionic supports. DEAE-Sepharose and Q-Sepharose derivatives as well as the free enzyme were stable in 30 and 50 % (v/v) 1-propanol. The CNBr-agarose derivative catalyzed complete tannic acid hydrolysis, whereas the Q-Sepharose derivative catalyzed the transesterification reaction to produce propyl gallate (88 % recovery), which is an important antioxidant. © 2012 Springer Science+Business Media Dordrecht.
Resumo:
An endoxylanase from Streptomyces halstedii was stabilized by multipoint covalent immobilization on glyoxyl-agarose supports. The immobilized enzyme derivatives preserved 65% of the catalytic activity corresponding to the one of soluble enzyme that had been immobilized. These immobilized derivatives were 200 times more stable 200 times more stable than the one-point covalently immobilized derivative in experiments involving thermal inactivation at 60 °C. The activity and stability of the immobilized enzyme was higher at pH 5.0 than at pH 7.0. The optimal temperature for xylan hydrolysis was 10 °C higher for the stabilized derivative than for the non-stabilized derivative. On the other hand, the highest loading capacity of activated 10% agarose gels was 75 mg of enzyme per mL of support. To prevent diffusional limitations, low loaded derivatives (containing 0.2 mg of enzyme per mL of support) were used to study the hydrolysis of xylan at high concentration (close to 1% (w/v)). 80% of the reducing sugars were released after 3 h at 55 °C. After 80% of enzymatic hydrolysis, a mixture of small xylo-oligosaccharides was obtained (from xylobiose to xylohexose) with a high percentage of xylobiose and minimal amounts of xylose. The immobilized-stabilized derivatives were used for 10 reaction cycles with no loss of catalytic activity. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Textile industries use large amounts of water in dyeing processes and a wide variety of synthetic dyes. A small concentration of these dyes in the environment can generate highly visible pollution and changes in aquatic ecosystems. Adsorption, biosorption, and biodegradation are the most advantageous dye removal processes. Biodegradation occurs when enzymes produced by certain microorganisms are capable of breaking down the dye molecule. To increase the efficiency of these processes, cell immobilization enables the reuse of the immobilized cells and offers a high degree of mechanical strength, allowing metabolic processes to take place under adverse conditions. The aim of the present study was to investigate the use of Saccharomyces cerevisiae immobilized in activated sugarcane bagasse for the degradation of Acid Black 48 dye in aqueous solutions. For such, sugarcane bagasse was treated with polyethyleneimine (PEI). Concentrations of a 1 % S. cerevisiae suspension were evaluated to determine cell immobilization rates. Once immobilization was established, biodegradation assays for 240 h with free and immobilized yeast in PEI-treated sugarcane bagasse were evaluated by Fourier transform infrared spectrophotometry. The results indicated a probable change in the dye molecule and the possible formation of new metabolites. Thus, S. cerevisiae immobilized in sugarcane bagasse is very attractive for biodegradation processes in the treatment of textile effluents. © 2013 Springer Science+Business Media Dordrecht.
Resumo:
The aim of the present study was to evaluate the efficacy of peroxidase immobilized on corncob powder for the discoloration of dye. Peroxidase was extracted from soybean seed coat, followed by amination of the surface of the tertiary structure. The aminated peroxidase was immobilized on highly activated corncob powder and employed for the discoloration of bromophenol blue. Amination was performed with 10 or 50 mmol.L-1carbodiimide and 1 mol.L-1ethylenediamine. The amount of protein in the extract was 0.235 ± 0.011 mg.mL-1and specific peroxidase activity was 86.06 ± 1.52 µmol min-1.mg-1, using 1 mmol.L-1ABTS as substrate. Ten mmol.L-1and 50 mmol.L-1 aminated peroxidase retained 88 and 100% of the initial activity. Following covalent immobilization on a corncob powder-glyoxyl support, 10 and 50 mmol.L-1aminated peroxidase retained 74 and 86% of activity, respectively. Derivatives were used for the discoloration of 0.02 mmol.L-1bromophenol blue solution. After 30 min, 93 and 89% discoloration was achieved with the 10 mmol.L-1and 50 mmol.L-1derivatives, respectively. Moreover, these derivatives retained 60% of the catalytic properties when used three times. Peroxidase extracted from soybean seed coat immobilized on a low-cost corncob powder support exhibited improved thermal stability. Keywords: Peroxidases. Multipoint immobilization of enzymes. Aminated enzymes. Corncob powder. RESUMO Descoloração de azul de bromofenol utilizando peroxidase imobilizada em pó de sabugo de milho altamente ativado Nesta pesquisa a enzima peroxidase foi extraída do tegumento de sementes de soja, e a superfície da estrutura terciária foi aminada. A peroxidase aminada foi imobilizada em suporte pó de sabugo de milho altamente ativado e utilizado na descoloração de azul de bromofenol. A aminação da peroxidase foi realizada com carbodiimida em concentrações de 10 e 50 mmol.L-1, e 1 mol.L-1de etilenodiamina. A quantidade de proteínas no extrato foi de 0,235 ± 0,011 mg.mL-1, e a atividade específica da peroxidase foi 86,06 ± 1,52 µmol min-1.mg-1, usando 1 mmol.L-1de ABTS como substrato. A peroxidase aminada a 10 mmol.L-1reteve 88% e a aminada a 50 mmol.L-1reteve 100% da atividade inicial. As peroxidases aminadas a 10 ou 50 mmol.L-1foram covalentemente imobilizadas em suporte glioxil-pó de sabugo de milho com atividade recuperada de 74% e 86%, respectivamente. Os derivados obtidos foram utilizados na descoloração de solução de azul de bromofenol 0,02 mmol.L-1. Após 30 min 93% de descoloração foram alcançados com o derivado glioxil-pó de sabugo de milho com a peroxidase aminada 10 mmol.L-1e 89% com a aminada 50 mmol.L-1. Estes derivados mantiveram 60% das propriedades catalíticas, quando utilizado por três vezes. A peroxidase extraída do tegumento da semente de soja imobilizada em suporte de baixo custo pó de sabugo de milho apresentou melhoria na estabilidade térmica da enzima. Palavras-chave: Peroxidases. Imobilização multipontual de enzimas. Aminação de enzimas. Pó de sabugo de milho.
Resumo:
Estudaram-se as alterações de atividade das enzimas musculares creatino quinase (CK), lactato desidrogenase (LDH) e aspartato aminotransferase (AST) em um grupo de cavalos que utilizados em provas de enduro de 70 e 100km de distância, em cinco competições. Os valores (U/l) basais (antes da largada) foram 245,13±9,84 para CK, 496,61±14,76 para LDH e 328,95±8,65 para AST. Todas as atividades das enzimas decresceram no primeiro momento das provas (~30km). Valores de pico, significativamente diferentes, foram alcançados para CK (413,59±50,75) imediatamente após 70km de distância; 24 horas após para LDH (628,61±33,30); e 48 horas após as provas para AST (389,89±16,96). A monitoração do período de recuperação revelou diferente comportamento entre as concentrações enzimáticas com CK retornando aos valores basais 24 horas pós-provas (279,61 ± 23,05). LDH e AST retornaram aos valores basais, 72 horas pós-provas (505,25±33,78 e 359,35±24,90, respectivamente). Os dados obtidos revelaram diferentes alterações na concentração de enzimas musculares de cavalos de enduro, diretamente relacionadas com a duração do esforço.
Resumo:
The objective of this work was to assess the functionality of the glycolytic pathways in the bacterium Xylella fastidiosa. To this effect, the enzymes phosphoglucose isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase of the glycolytic pathway, and glucose 6-phosphate dehydrogenase of the Entner-Doudoroff pathway were studied, followed by cloning and expression studies of the enolase gene and determination of its activity. These studies showed that X. fastidiosa does not use the glycolytic pathway to metabolize carbohydrates, which explains the increased duplication time of this phytopatogen. Recombinant enolase was expressed as inclusion bodies and solubilized with urea (most efficient extractor), Triton X-100, and TCA. Enolase extracted from X. fastidiosa and from chicken muscle and liver is irreversibly inactivated by urea. The purification of enolase was partial and resulted in a low yield. No enzymatic activity was detected for either recombinant and native enolases, aldolase, and glyceraldehyde-3-phosphate dehydrogenase, suggesting that X. fastidiosa uses the Entner-Doudoroff pathway to produce pyruvate. Evidence is presented supporting the idea that the regulation of genes and the presence of isoforms with regulation patterns might make it difficult to understand the metabolism of carbohydrates in X. fastidiosa.
Resumo:
Two metabolism assays were carried out to determine corn and soybean meal metabolizable energy when enzymes were added. In the first trial, 35 cockerels per studied feedstuff (corn and soybean meal) were distributed in a completely randomized experimental design with four treatments of seven replicates of one bird each. The evaluated treatments were: ingredient (corn and soybean meal) with no enzyme addition, with the addition of an enzyme complex (xylanase, amylase, protease - XAP), xylanase, or phytase. Precise feeding method was used to determine true metabolizable energy corrected for nitrogen balance (TMEn). The use of enzymes did not result in any differences (p>0.05) in soybean meal TMEn, but phytase improved corn TMEn in 2.3% (p=0.004). In the second trial, 280 seven-day-old broiler chicks were distributed in a completely randomized experimental design with seven treatments of five replicates of eight birds each. Treatments consisted of corn with no enzyme addition or with the addition of amylase, xylanase, phytase, XAP complex, XAP+phytase combination, or xylanase/ pectinase/β-glucanase complex (XPBG). Corn was supplemented with macro and trace minerals. Total excreta collection was used to determine apparent metabolizable energy corrected for nitrogen balance (AMEn). Differences were observed (p=0.08) in AMEn and dry matter metabolizability coefficient (p=0.03). The combination of the XAP complex with phytase promoted a 2.11% increase in corn AMEn values, and the remaining enzymes allowed increased between 0.86% and 1.66%.
Resumo:
O efeito da inclusão de mananoligossacarídeo (MOS) e/ou enzimas em dietas de frangos sobre os títulos de anticorpos contra os vírus das doenças de Gumboro (VDG) e de Newcastle (VDN). Setecentos e cinqüenta aves foram distribuídas em um delineamento experimental inteiramente ao acaso, em arranjo fatorial 2 x 2 + 1, com dois níveis de MOS (0 e 0,1% até 21 dias e 0,05% de 22 até 42 dias de idade), dois níveis de enzimas (0 e 0,05%) e uma dieta-controle-positivo contendo antibióticos, totalizando cinco tratamentos com cinco repetições. Para análise dos anticorpos, amostras de sangue foram colhidas semanalmente por punção da veia jugular em duas aves de cada repetição. A primeira e a última colheita foram realizadas aos sete e 42 dias de idade, respectivamente. A inclusão de MOS resultou em aumento dos títulos contra VDG na quarta (P<0,03) e quinta (P<0,02) semanas, e contra VDN na terceira (P<0,01), quarta (P<0,03) e quinta (P<0,03) semanas de idade. O MOS foi efetivo em estimular a resposta imune humoral contra VDG e VDN vacinais.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Different culture conditions for Protaminobacter rubrum and enzymatic reaction parameters were evaluated with the goal of improving isomaltulose production. P. rubrum was grown in a medium with 1% (w/v) cane molasses and 0.5% yeast extract and achieved a maximum cell yield Y(x/s) of 0.295 g of cells/g sucrose and a specific growth rate (mu) of 0.192 h(-1). The immobilization of P. rubrum cells was carried out with calcium alginate, glutaraldehyde and polyethyleneimine. Stabile immobilized cell pellets were obtained and used 24 times in batch processes. Enzymatic conversion was carried out at different sucrose concentrations and in pH 6 medium with 70% (w/v) sucrose at 30 degrees C an isomaltulose yield of 89-94% (w/v) was obtained. The specific activity of the P. rubrum immobilized pellets in calcium alginate at 30 degrees C ranged from 1.6 to 4.0 g isomaltulose g(-1) pellet h(-1), respectively with 70% and 65% sucrose solution, while in lower sucrose concentration had higher specific activities presumably due to substrate inhibition of the isomaltulose synthase in higher sucrose concentrations. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The control of molecular architectures has been a key factor for the use of Langmuir-Blodgett (LB) films in biosensors, especially because biomolecules can be immobilized with preserved activity. In this paper we investigated the incorporation of tyrosinase (Tyr) in mixed Langmuir films of arachidic acid (AA) and a lutetium bisphthalocyanine (LuPc2), which is confirmed by a large expansion in the surface pressure isotherm. These mixed films of AA-LuPc2 + Tyr could be transferred onto ITO and Pt electrodes as indicated by FTIR and electrochemical measurements, and there was no need for crosslinking of the enzyme molecules to preserve their activity. Significantly, the activity of the immobilised Tyr was considerably higher than in previous work in the literature, which allowed Tyr-containing LB films to be used as highly sensitive voltammetric sensors to detect pyrogallol. Linear responses have been found up to 400 mu M, with a detection limit of 4.87 x 10(-2) mu M (n = 4) and a sensitivity of 1.54 mu A mu M-1 cm(-2). In addition, the Hill coefficient (h = 1.27) indicates cooperation with LuPc2 that also acts as a catalyst. The enhanced performance of the LB-based biosensor resulted therefore from a preserved activity of Tyr combined with the catalytic activity of LuPc2, in a strategy that can be extended to other enzymes and analytes upon varying the LB film architecture.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)