42 resultados para Homologia Singular
Resumo:
In this paper singularly perturbed reversible vector fields defined in R-n without normal hyperbolicity conditions are discussed. The main results give conditions for the existence of infinitely many periodic orbits and heteroclinic cycles converging to singular orbits with respect to the Hausdorff distance.
Resumo:
An analytical approach for the spin stabilized satellite attitude propagation is presented using the non-singular canonical variables to describe the rotational motion. Two sets of variables were introduced for Fukushima in 1994 by a canonical transformation and they are useful when the angle between z-satellite axis of a coordinate system fixed in artificial satellite and the rotational angular momentum vector is zero or when the angle between Z-equatorial axis and rotation angular momentum vector is zero. Analytical solutions for rotational motion equations and torque-free motion are discussed in terms of the elliptic functions and by the application of some simplification to get an approximated solution. These solutions are compared with a numerical solution and the results show a good agreement for many rotation periods. When the mean Hamiltonian associated with the gravity gradient torque is included, an analytical solution is obtained by the application of the successive approximations' method for the satellite in an elliptical orbit. These solutions show that the magnitude of the rotation angular moment is not affected by the gravity gradient torque but this torque causes linear and periodic variations in the angular variables, long and short periodic variations in Z-equatorial component of the rotation angular moment and short periodic variations in x-satellite component of the rotation angular moment. The goal of this analysis is to emphasize the geometrical and physical meaning of the non-singular variables and to validate the approximated analytical solution for the rotational motion without elliptic functions for a non-symmetrical satellite. The analysis can be applied for spin stabilized satellite and in this case the general solution and the approximated solution are coincidence. Then the results can be used in analysis of the space mission of the Brazilian Satellites. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
It is shown that for singular potentials of the form lambda/r(alpha),the asymptotic form of the wave function both at r --> infinity and r --> 0 plays an important role. Using a wave function having the correct asymptotic behavior for the potential lambda/r(4), it is, shown that it gives the exact ground-state energy for this potential when lambda --> 0, as given earlier by Harrell [Ann. Phys. (NY) 105, 379 (1977)]. For other values of the coupling parameter X, a trial basis;set of wave functions which also satisfy the correct boundary conditions at r --> infinity and r --> 0 are used to find the ground-state energy of the singular potential lambda/r(4) It is shown that the obtained eigenvalues are in excellent agreement with their exact ones for a very large range of lambda values.
Resumo:
In this article we describe some qualitative and geometric aspects of nonsmooth dynamical systems theory around typical singularities. We also establish an interaction between nonsmooth systems and geometric singular perturbation theory. Such systems are represented by discontinuous vector fields on R(l), l >= 2, where their discontinuity set is a codimension one algebraic variety. By means of a regularization process proceeded by a blow-up technique we are able to bring about some results that bridge the space between discontinuous systems and singularly perturbed smooth systems. We also present an analysis of a subclass of discontinuous vector fields that present transient behavior in the 2-dimensional case, and we dedicate a section to providing sufficient conditions in order for our systems to have local asymptotic stability.
Resumo:
This paper presents an analyze of numeric conditioning of the Hessian matrix of Lagrangian of modified barrier function Lagrangian method (MBFL) and primal-dual logarithmic barrier method (PDLB), which are obtained in the process of solution of an optimal power flow problem (OPF). This analyze is done by a comparative study through the singular values decomposition (SVD) of those matrixes. In the MBLF method the inequality constraints are treated by the modified barrier and PDLB methods. The inequality constraints are transformed into equalities by introducing positive auxiliary variables and are perturbed by the barrier parameter. The first-order necessary conditions of the Lagrangian function are solved by Newton's method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, allowing the limits of the inequality constraints to be reached. The electric systems IEEE 14, 162 and 300 buses were used in the comparative analysis. ©2007 IEEE.
Resumo:
In this paper singularly perturbed vector fields Xε defined in ℝ2 are discussed. The main results use the solutions of the linear partial differential equation XεV = div(Xε)V to give conditions for the existence of limit cycles converging to a singular orbit with respect to the Hausdorff distance. © SPM.
Resumo:
This paper deals with exponential stability of discrete-time singular systems with Markov jump parameters. We propose a set of coupled generalized Lyapunov equations (CGLE) that provides sufficient conditions to check this property for this class of systems. A method for solving the obtained CGLE is also presented, based on iterations of standard singular Lyapunov equations. We present also a numerical example to illustrate the effectiveness of the approach we are proposing.
Resumo:
We study smooth foliations on the solid torus S1×D2 having S1×{0} and S1×∂D2 as the only compact leaves and S1×{0} as singular set. We show that all other leaves can only be cylinders or planes, and give necessary conditions for the foliation to be a suspension of a diffeomorphism of the disc. © 2013 Elsevier B.V.
Resumo:
Pós-graduação em Artes - IA
Resumo:
Pós-graduação em Artes - IA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A autora investiga o romance O selvagem da ópera, de Rubem Fonseca, publicado em 1994 e que se destaca por certa excepcionalidade dentro da obra do escritor, conhecido pelo uso da linguagem das ruas e pela ênfase nas situações de violência social - embora neste texto, publicado quatro anos após ter lançado Agosto, em que mesclava história e ficção para narrar os acontecimentos do mês em que Getúlio Vargas se suicidou, também volte a utilizar esses elementos. No livro, Fonseca debruça-se sobre a vida do compositor Carlos Gomes, famoso por sua ópera O Guarani, desde a sua partida de Campinas para o Rio de Janeiro de D. Pedro II, e depois para a Itália, onde encontraria a glória e o fracasso. O autor não se limita, porém, à simples narrativa histórica: investe também no hibridismo de gêneros, já que é contado para o leitor que o romance servirá de base para um filme de longa-metragem. Dessa forma, segundo a pesquisadora, Fonseca, empregando o recurso da metaficção, monta um jogo de simulacros e armadilhas, deixando o leitor indeciso se está diante de um material biográfico ou de um roteiro cinematográfico. Além da análise formal, o livro também discute as implicações trazidas pelo olhar inovador de Fonseca diante do cenário artístico e cultural da segunda metade do século 19