37 resultados para Heat transfer coefficient
Resumo:
This article presents empirical correlations to predict the density, specific heat, thermal conductivity and rheological power-law parameters of liquid egg yolk over a temperature range compatible with its industrial thermal processing (0-61 C). Moreover, a mathematical model for a pasteurizer that takes into account the spatial variation of the overall heat transfer coefficient throughout the plate heat exchanger is presented, as are two of its simplified forms. The obtained correlations of thermophysical properties are applied for the simulation of the egg yolk pasteurization, and the obtained temperature profiles are used for evaluating the extent of thermal inactivation. A detailed simulation example shows that there is a considerable deviation between the designed level of heat treatment and that this is predicted through process simulation. It is shown that a reliable mathematical model, combined with specialized thermophysical property correlations, provide a more accurate design of the pasteurization equipment that ensures effective inactivation, while preserving nutritional and sensorial characteristics.
Resumo:
Despite its importance for designing evaporators and condensers, a review of the literature shows that heat transfer data during phase change of carbon dioxide is very limited, mainly for microchannel flows. In order to give a contribution on this subject, an experimental study of CO 2 evaporation inside a 0.8 mm-hydraulic diameter microchannel was performed in this work. The average heat transfer coefficient along the microchannel was measured and visualization of the flow patterns was conducted. A total of 67 tests were performed at saturation temperature of 23.3°C for a heat flux of 1800 W/(m2°C). Vapor qualities ranged from 0.005 to 0.88 and mass flux ranged from 58 to 235 kg/(m2s). An average heat transfer coefficient of 9700 W/(m2°C) with a standard deviation of 35% was obtained. Nucleate boiling was found to characterize the flow regime for the test conditions. The dryout of the flow, characterized by the sudden reduction in the heat transfer coefficient, was identified at vapor qualities around 0.85. Flow visualization results showed three flow patterns. For low vapor qualities (up to about 0.25), plug flow was predominant, while slug flow occurred at moderated vapor qualities (from about 0.25 to 0.50). Annular flow was the flow pattern for higher vapor qualities. Copyright © 2006 by ABCM.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A model is presented for the respiratory heat loss in sheep, considering both the sensible heat lost by convection (C-R) and the latent heat eliminated by evaporation (E-R). A practical method is described for the estimation of the tidal volume as a function of the respiratory rate. Equations for C-R and E-R are developed and the relative importance of both heat transfer mechanisms is discussed. At air temperatures up to 30 degreesC sheep have the least respiratory heat loss at air vapour pressures above 1.6 kPa. At an ambient temperature of 40 degreesC respiratory loss of sensible heat can be nil; for higher temperatures the transfer by convection is negative and thus heat is gained. Convection is a mechanism of minor importance for the respiratory heat transfer in sheep at environmental temperatures above 30 degreesC. These observations show the importance of respiratory latent heat loss for thermoregulation of sheep in hot climates.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study investigates the utilisation of a simplified model in the transient analysis of a thermal cooling process. In such process the external thermal resistance between the surface and the surroundings is high compared to the system internal thermal resistance, so that the first controls the heat transfer process. In this case the Biot number is lower than 0.1. Aluminium reels were utilised, which, with proper internal instrumentation, furnished experimental results for the thermal cooling process. Based on experimental data, a simplified model for the determination of the process film coefficient was used. Subsequently, experimental and theoretical results were compared. The change of the airflow direction was also investigated for the cooling process, aiming at process time optimisation. (C) 2001 Elsevier B.V. Ltd.
Resumo:
A thorough study of the thermal performance of multipass parallel cross-flow and counter-cross-flow heat exchangers has been carried out by applying a new numerical procedure. According to this procedure, the heat exchanger is discretized into small elements following the tube-side fluid circuits. Each element is itself a one-pass mixed-unmixed cross-flow heat exchanger. Simulated results have been validated through comparisons to results from analytical solutions for one- to four-pass, parallel cross-flow and counter-cross-flow arrangements. Very accurate results have been obtained over wide ranges of NTU (number of transfer units) and C* (heat capacity rate ratio) values. New effectiveness data for the aforementioned configurations and a higher number of tube passes is presented along with data for a complex flow configuration proposed elsewhere. The proposed procedure constitutes a useful research tool both for theoretical and experimental studies of cross-flow heat exchangers thermal performance.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The general principles of the mechanisms of heat transfer are well known, but knowledge of the transition between evaporative and non-evaporative heat loss by Holstein cows in field conditions must be improved, especially for low-latitude environments. With this aim 15 Holstein cows managed in open pasture were observed in a tropical region. The latent heat loss from the body surface of the animals was measured by means of a ventilated capsule, while convective heat transfer was estimated by the theory of convection from a horizontal cylinder and by the long-wave radiation exchange based on the Stefan-Boltzmann law. When the air temperature was between 10 and 36 degrees C the sensible heat transfer varied from 160 to -30 W m(-2), while the latent heat loss by cutaneous evaporation increased from 30 to 350 W m(-2). Heat loss by cutaneous evaporation accounted for 20-30% of the total heat loss when air temperatures ranged from 10 to 20 degrees C. At air temperatures > 30 degrees C cutaneous evaporation becomes the main avenue of heat loss, accounting for approximately 85% of the total heat loss, while the rest is lost by respiratory evaporation.
Resumo:
In order to develop statistical models to predict respiratory heat loss in dairy cattle using simple physiological and environmental measurements, 15 Holstein cows were observed under field conditions in a tropical environment, in which the air temperature reached up to 40 ° C. The measurements of latent and sensible heat loss from the respiratory tract of the animals were made by using a respiratory mask. The results showed that under air temperatures between 10 and 35 ° C sensible heat loss by convection decreased from 8.24 to 1.09 W m(-2), while the latent heat loss by evaporation increased from 1.03 to 56.51 W m(-2). The evaporation increased together with the air temperature in almost a linear fashion until 20 ° C, but it became increasingly high as the air temperature rose above 25 ° C. Convection was a mechanism of minor importance for respiratory heat transfer. In contrast, respiratory evaporation was an effective means of thermoregulation for Holsteins in a hot environment. Mathematical models were developed to predict both the sensible and latent heat loss from the respiratory tract in Holstein cows under field conditions, based on measurements of the ambient temperature, and other models were developed to predict respiration rate, tidal volume, mass flow rate and expired air temperature as functions of the ambient temperature and other variables.
Resumo:
The aim of this work is the evaluation of four different heat exchangers used for myocardium during cardioplegic system in cardiac surgeries. Four types of shell and tube heat exchangers made of different exchange elements were constructed, as follows: stainless steel tubes, aluminium tubes, polypropylene hollow fiber, and bellows type. The evaluation was performed by in vitro tests of parameters such as heat transfer, pressure drop, and hemolysis tendency. The result has shown that all four systems tested were able to achieve the heat performance, and to offer low resistance to flow, and safety, as well as have low tendency to hemolysis. However, we can emphasize that the bellows type heat exchanger has a significant difference with regard to the other three types.
Resumo:
This work considers a problem of interest in several technological applications such as the thermal control of electronic equipment. It is also important to study the heat transfer performance of these components under off-normal conditions, such as during failure of cooling fans. The effect of natural convection on the flow and heat transfer in a cavity with two flush mounted heat sources on the left vertical wall, simulating electronic components, is studied numerically and experimentally. The influence of the power distribution, spacing between the heat sources and cavity aspect ratio have been investigated. An analysis of the average Nusselt number of the two heat sources was performed to investigate the behavior of the heat transfer coefficients. The results obtained numerically and experimentally, after an error analysis, showed a good agreement.