19 resultados para Hamburger Kunsthalle.
Resumo:
Over the past 9 years, 468 bacterial strains isolated from raw and pasteurized milk, beef and pork, bovine and chicken liver, chicken heart, gizzards and lung sausage, hamburger, cheese and lettuce in different regions of the State of Sao Paulo and in the city of Rio de Janeiro were received by the Reference Laboratory for Yersinia in Brazil. All were confirmed to be Yersinia spp. The 468 Yersinia isolates were grouped as 184 strains because some of the bacteria isolated from the same food sample belonged to the same species, and were considered to be a single strain. The Yersinia food strains were classified as Y. enterocolitica (46), Y. intermedia (67), Y. frederiksenii (20), Y. kristensenii (8) and 43 of them were biochemically atypical. Pathogenic types were not detected.
Resumo:
The aim of this study was to determine the antioxidant activity of Moringa (Moringa oleifera Lam.) leaves flour in beef burger during storage for 120 days. Six hamburger formulations were processed: one control (without the use of additives), four with addition of Moringa leaves flour (0.10, 0.15, 0.20, and 0.25 g/100 g aggregate), and one with addition of synthetic antioxidant Propyl Gallate (0.01 g/100 g aggregate). The products were analyzed for their chemical composition with determinations of moisture, protein, dietary fiber, lipids, ash, carbohydrate, and caloric value after preparation. Microbiological and acceptance testing were performed at the beginning and after 120 days of storage. Determination of pH, instrumental color and lipid oxidation (TBARS) were performed at 1, 30, 60, 90 and 120 days of storage. All samples showed physical-chemical and microbiological tests in accordance with the Brazilian legislation. pH measurements were between 5.48 and 5.90; however, the intensity of red has changed according to the treatments and storage periods. The addition of Moringa leaves flour had no antioxidant effect on burgers, but its inclusion not only contributed to the improvement of nutritional quality, but also did not harm product acceptance.
Resumo:
Okara is a residue of production process of soy milk, wich has a considered nutritional value for containing proteins, lipids and fi bers in signifi cant amount, besides bioactive compounds, such as isofl avone. Despite these qualities, the great amount of okara produced annually in Brazil and in other countries generates a problem of disposal waste and it has served only for animal food products. Such situation can be changed by studies, that demonstrate the viability of okara’s utilization in human nourishment. Thus, the purpose of this research was to develop a fermented hamburger with a probiotic bacteria, based on chicken meat and okara fl our. Five formulations were processed: F1-100% of chicken meat, unfermented and containing curing salts, F2-100% of chicken meat, fermented with L. acidophilus, F3 - 90% of chicken meat and 10% of okara meal, fermented with L. acidophilus, F4 - 70% of chicken meat and 30% of okara meal, fermented with L. acidophilus; F5 - 50% of chicken meat and 50% of okara meal, fermented with L. acidophilus. All formulations were evaluated for the viability of the probiotic culture, determination of cooking yield and shrinkage percentage, pH and sensory characteristics. The results have demonstrated that it is possible to elaborate a chicken hamburger, fermented with Lactobacillus acidophilus CRL 1014, with the addition of 10% okara fl our.
Resumo:
The objective of this study was to investigate the effect of fermentation with Lactobacillus acidophilus CRL 1014 on the physicochemical, microbiological and sensory characteristics of a hamburger product like processed with chicken meat and okara flour, with reduction of curing salts. A mixture of ingredients containing 90% chicken meat and 10% okara flour was subjected to the following treatments: F1: fermented with Lactobacillus acidophilus; F2:75 mg nitrite/kg and fermented with Lactobacillus acidophilus; F3: 150 mg nitrite/kg and unfermented. The quality of the “hamburgers” was assessed by physical and chemical analysis (pH, cooking yield and shrinkage), chemical composition, microbiological tests (Salmonella spp., count of sulphite-reducing clostridia, staphylococos coagulase-positive, total coliforms and Escherichia coli) and sensory analysis (sensory acceptance and purchase intent). During the first six days of fermentation, there was a decrease in pH from approximately 6.33 to 5.10. All the samples showed the same chemical composition (p < 0.05). The fermentation process was observed to inhibit the multiplication of microorganisms of several groups: coagulasepositive staphylococci, sulphite-reducing clostridia, Salmonella spp. and E. coli. The different “hamburgers” formulations showed high scores for all the sensory attributes evaluated, without differing from each other (p < 0.05). The results showed that the use of L. acidophilus CRL 1014 enabled the production of a safe product, with good physicochemical and sensory characteristics, in the absence of curing salts.