45 resultados para Genetic symbiotic algorithm
Resumo:
An enhanced genetic algorithm (EGA) is applied to solve the long-term transmission expansion planning (LTTEP) problem. The following characteristics of the proposed EGA to solve the static and multistage LTTEP problem are presented, (1) generation of an initial population using fast, efficient heuristic algorithms, (2) better implementation of the local improvement phase and (3) efficient solution of linear programming problems (LPs). Critical comparative analysis is made between the proposed genetic algorithm and traditional genetic algorithms. Results using some known systems show that the proposed EGA presented higher efficiency in solving the static and multistage LTTEP problem, solving a smaller number of linear programming problems to find the optimal solutions and thus finding a better solution to the multistage LTTEP problem. Copyright © 2012 Luis A. Gallego et al.
Resumo:
In the last few years, crop rotation has gained attention due to its economic, environmental and social importance which explains why it can be highly beneficial for farmers. This paper presents a mathematical model for the Crop Rotation Problem (CRP) that was adapted from literature for this highly complex combinatorial problem. The CRP is devised to find a vegetable planting program that takes into account green fertilization restrictions, the set-aside period, planting restrictions for neighboring lots and for crop sequencing, demand constraints, while, at the same time, maximizing the profitability of the planted area. The main aim of this study is to develop a genetic algorithm and test it in a real context. The genetic algorithm involves a constructive heuristic to build the initial population and the operators of crossover, mutation, migration and elitism. The computational experiment was performed for a medium dimension real planting area with 16 lots, considering 29 crops of 10 different botanical families and a two-year planting rotation. Results showed that the algorithm determined feasible solutions in a reasonable computational time, thus proving its efficacy for dealing with this practical application.
Resumo:
This paper presents an application to traffic lights control in congested urban traffic, in real time, taking as input the position and route of the vehicles in the involved areas. This data is obtained from the communication between vehicles and infrastructure (V2I). Due to the great complexity of the possible combination of traffic lights and the short time to get a response, Genetic Algorithm was used to optimize this control. According to test results, the application can reduce the number of vehicles in congested areas, even with the entry of vehicles that previously were not being considered in these roads, such as parked vehicles. © 2012 IEEE.
Resumo:
The present paper proposes a new hybrid multi-population genetic algorithm (HMPGA) as an approach to solve the multi-level capacitated lot sizing problem with backlogging. This method combines a multi-population based metaheuristic using fix-and-optimize heuristic and mathematical programming techniques. A total of four test sets from the MULTILSB (Multi-Item Lot-Sizing with Backlogging) library are solved and the results are compared with those reached by two other methods recently published. The results have shown that HMPGA had a better performance for most of the test sets solved, specially when longer computing time is given. © 2012 Elsevier Ltd.
Resumo:
The present paper solves the multi-level capacitated lot sizing problem with backlogging (MLCLSPB) combining a genetic algorithm with the solution of mixed-integer programming models and the improvement heuristic fix and optimize. This approach is evaluated over sets of benchmark instances and compared to methods from literature. Computational results indicate competitive results applying the proposed method when compared with other literature approaches. © 2013 IEEE.
Resumo:
This paper applies a genetic algorithm with hierarchically structured population to solve unconstrained optimization problems. The population has individuals distributed in several overlapping clusters, each one with a leader and a variable number of support individuals. The hierarchy establishes that leaders must be fitter than its supporters with the topological organization of the clusters following a tree. Computational tests evaluate different population structures, population sizes and crossover operators for better algorithm performance. A set of known benchmark test problems is solved and the results found are compared with those obtained from other methods described in the literature, namely, two genetic algorithms, a simulated annealing, a differential evolution and a particle swarm optimization. The results indicate that the method employed is capable of achieving better performance than the previous approaches in regard as the two criteria usually employed for comparisons: the number of function evaluations and rate of success. The method also has a superior performance if the number of problems solved is taken into account. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper describes a new methodology adopted for urban traffic stream optimization. By using Petri net analysis as fitness function of a Genetic Algorithm, an entire urban road network is controlled in real time. With the advent of new technologies that have been published, particularly focusing on communications among vehicles and roads infrastructures, we consider that vehicles can provide their positions and their destinations to a central server so that it is able to calculate the best route for one of them. Our tests concentrate on comparisons between the proposed approach and other algorithms that are currently used for the same purpose, being possible to conclude that our algorithm optimizes traffic in a relevant manner.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Capacitated Centered Clustering Problem (CCCP) consists of defining a set of p groups with minimum dissimilarity on a network with n points. Demand values are associated with each point and each group has a demand capacity. The problem is well known to be NP-hard and has many practical applications. In this paper, the hybrid method Clustering Search (CS) is implemented to solve the CCCP. This method identifies promising regions of the search space by generating solutions with a metaheuristic, such as Genetic Algorithm, and clustering them into clusters that are then explored further with local search heuristics. Computational results considering instances available in the literature are presented to demonstrate the efficacy of CS. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The optimized allocation of protective devices in strategic points of the circuit improves the quality of the energy supply and the system reliability index. This paper presents a nonlinear integer programming (NLIP) model with binary variables, to deal with the problem of protective device allocation in the main feeder and all branches of an overhead distribution circuit, to improve the reliability index and to provide customers with service of high quality and reliability. The constraints considered in the problem take into account technical and economical limitations, such as coordination problems of serial protective devices, available equipment, the importance of the feeder and the circuit topology. The use of genetic algorithms (GAs) is proposed to solve this problem, using a binary representation that does (1) or does not (0) show allocation of protective devices (reclosers, sectionalizers and fuses) in predefined points of the circuit. Results are presented for a real circuit (134 busses), with the possibility of protective device allocation in 29 points. Also the ability of the algorithm in finding good solutions while improving significantly the indicators of reliability is shown. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this work, genetic algorithms concepts along with a rotamer library for proteins side chains and implicit solvation potential are used to optimize the tertiary structure of peptides. We starting from the known PDB structure of its backbone which is kept fixed while the side chains allowed adopting the conformations present in the rotamer library. It was used rotamer library independent of backbone and a implicit solvation potential. The structure of Mastoporan-X was predicted using several force fields with a growing complexity; we started it with a field where the only present interaction was Lennard-Jones. We added the Coulombian term and we considered the solvation effects through a term proportional to the solvent accessible area. This paper present good and interesting results obtained using the potential with solvation term and rotamer library. Hence, the algorithm (called YODA) presented here can be a good tool to the prediction problem. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Milk, fat, and protein yields of Holstein cows from the States of New York and California in the United States were used to estimate (co)variances among yields in the first three lactations, using an animal model and a derivative-free restricted maximum likelihood (REML) algorithm, and to verify if yields in different lactations are the same trait. The data were split in 20 samples, 10 from each state, with means of 5463 and 5543 cows per sample from California and New York. Mean heritability estimates for milk, fat, and protein yields for California data were, respectively, 0.34, 0.35, and 0.40 for first; 0.31, 0.33, and 0.39 for second; and 0.28, 0.31, and 0.37 for third lactations. For New York data, estimates were 0.35, 0.40, and 0.34 for first; 0.34, 0.44, and 0.38 for second; and 0.32, 0.43, and 0.38 for third lactations. Means of estimates of genetic correlations between first and second, first and third, and second and third lactations for California data were 0.86, 0.77, and 0.96 for milk; 0.89, 0.84, and 0.97 for fat; and 0.90, 0.84, and 0.97 for protein yields. Mean estimates for New York data were 0.87, 0.81, and 0.97 for milk; 0.91, 0.86, and 0.98 for fat; and 0.88, 0.82, and 0.98 for protein yields. Environmental correlations varied from 0.30 to 0.50 and were larger between second and third lactations. Phenotypic correlations were similar for both states and varied from 0.52 to 0.66 for milk, fat and protein yields. These estimates are consistent with previous estimates obtained with animal models. Yields in different lactations are not statistically the same trait but for selection programs such yields can be modelled as the same trait because of the high genetic correlations.