92 resultados para Generalized quadrangles
Resumo:
In this work we define the composite function for a special class of generalized mappings and we study the invertibility for a certain class of generalized functions with real values.
Resumo:
Paracoccidioidomycosis (PCM) is a severe systemic mycosis, endemic in Latin America and highly prevalent in Brazil, where it ranks eighth as a mortality cause among infectious and parasitic diseases in humans. The disease in animals has been little explored. It is observed that armadillos can harbor the fungus at high frequencies, although the active disease has not been well documented in this wild mammal. Dogs are susceptible to experimental infection, and the naturally acquired PCM-disease was reported only recently in a dog from Brazil. The present work reports the second case of naturally acquired PCM in a 6-year-old female dog that presented emaciation, lymphadenomegaly, and hepatosplenomegaly. Biochemical and pulmonary radiographic evaluation did not reveal any abnormalities. PCM was diagnosed by clinical findings, culturing, immunohistochemistry, and histopathology of popliteal lymph node. The fungus was recovered from popliteal lymph node, and the molecular analysis showed respective sequencing similarities of 99 and 100% for 803 nucleotides of the Gp43 gene and 592 nucleotides from the ITS-5.8S region of Paracoccidioides brasiliensis. Immunohistochemistry revealed severe lymphadenitis and presented numerous yeasts, which reacted against the gp43 antibody. Histopathology revealed a severe granulomatous lymphadenitis associated with numerous single or multiple budding yeasts. After diagnosis, the dog was successfully treated with itraconazol for 2 years. Veterinarians should be aware of the importance of considering PCM for differential diagnosis, especially in dogs from PCM-endemic areas, whose monophagocytic system involvement is evident.
Resumo:
Sarcoidosis is a rare equine skin disease characterized primarily by an exfoliative and granulomatous dermatitis but also presenting granulomatous inflammation of multiple systems. The current report presents the clinical and histopathological findings of sarcoidosis in a 16-year-old American Quarter Horse gelding with nested polymerase chain reaction Mycobacterium spp. DNA detection within hepatic and skin samples. Mycobacterium spp. may play a role in the pathogenesis of equine sarcoidosis as has been proposed for human sarcoidosis.
Resumo:
International Journal of Paediatric Dentistry 2012; 22: 310316 Background. Generalized aggressive periodontitis (GAP) in primary teeth is a rare periodontal disease that occurs during or soon after eruption of the primary teeth. An association with systemic diseases is a possibility. Case Report. A 4-year-old Brazilian girl presented with GAP involving the entire primary dentition. The patient and her parents and sister were subjected to microbiological testing to identify the microorganisms involved in the disease. The patient underwent tooth extraction to eradicate the disease and received a prosthesis for the restoration of masticatory function. After the permanent teeth erupted, fixed orthodontic appliances were place to restore dental arch form and occlusion. Conclusions. The results show the importance of an early diagnosis of GAP and of a multidisciplinary approach involving laboratory and clinical management to treat the disease and to restore masticatory function, providing a better quality of life for patients.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Generalized Bessel polynomials (GBPs) are characterized as the extremal polynomials in certain inequalities in L-2 norm of Markov type. (C) 1998 Academic Press.
Resumo:
We show that multitrace interactions can be consistently incorporated into an extended AdS conformal field theory (CFT) prescription involving the inclusion of generalized boundary conditions and a modified Legendre transform prescription. We find new and consistent results by considering a self-contained formulation which relates the quantization of the bulk theory to the AdS/CFT correspondence and the perturbation at the boundary by double-trace interactions. We show that there exist particular double-trace perturbations for which irregular modes are allowed to propagate as well as the regular ones. We perform a detailed analysis of many different possible situations, for both minimally and nonminimally coupled cases. In all situations, we make use of a new constraint which is found by requiring consistency. In the particular nonminimally coupled case, the natural extension of the Gibbons-Hawking surface term is generated.
Resumo:
We propose an extension of the original thought experiment proposed by Geroch, which sparked much of the actual debate and interest on black hole thermodynamics, and show that the generalized second law of thermodynamics is in compliance with it.
Resumo:
We discuss in this paper equations describing processes involving non-linear and higher-order diffusion. We focus on a particular case (u(t) = 2 lambda (2)(uu(x))(x) + lambda (2)u(xxxx)), which is put into analogy with the KdV equation. A balance of nonlinearity and higher-order diffusion enables the existence of self-similar solutions, describing diffusive shocks. These shocks are continuous solutions with a discontinuous higher-order derivative at the shock front. We argue that they play a role analogous to the soliton solutions in the dispersive case. We also discuss several physical instances where such equations are relevant.
Resumo:
The construction of a class of non-abelian Toda models admiting dyonic type soliton solutions is reviewed.
Resumo:
We consider a real Lagrangian off-critical submodel describing the soliton sector of the so-called conformal affine sl(3)((1)) Toda model coupled to matter fields. The theory is treated as a constrained system in the context of Faddeev-Jackiw and the symplectic schemes. We exhibit the parent Lagrangian nature of the model from which generalizations of the sine-Gordon (GSG) or the massive Thirring (GMT) models are derivable. The dual description of the model is further emphasized by providing the relationships between bilinears of GMT spinors and relevant expressions of the GSG fields. In this way we exhibit the strong/weak coupling phases and the (generalized) soliton/particle correspondences of the model. The sl(n)((1)) case is also outlined. (C) 2002 American Institute of Physics.
Resumo:
Here we explore the link between the moments of the Laguerre polynomials or Laguerre moments and the generalized functions (as the Dirac delta-function and its derivatives), presenting several interesting relations. A useful application is related to a procedure for calculating mean values in quantum optics that makes use of the so-called quasi-probabilities. One of them, the P-distribution, can be represented by a sum over Laguerre moments when the electromagnetic field is in a photon-number state. Consequently, the P-distribution can be expressed in terms of Dirac delta-function and derivatives. More specifically, we found a direct relation between P-distributions and the Laguerre factorial moments.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincare algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincare algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson-Sigma models based on a nonlinear deformation of the extended Poincare algebra.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)