151 resultados para Fuzzy KNN
Resumo:
Neste trabalho é proposta uma metodologia de rastreamento de sinais e rejeição de distúrbios aplicada a sistemas não-lineares. Para o projeto do sistema de rastreamento, projeta-se os controladores fuzzy M(a) e N(a) que minimizam o limitante superior da norma H∞ entre o sinal de referência r(t) e o sinal de erro de rastreamento e(t), sendo e(t) a diferença entre a entrada de referência e a saída do sistema z(t). No método de rejeição de distúrbio utiliza-se a realimentação dinâmica da saída através de um controlador fuzzy Kc(a) que minimiza o limitante superior da norma H∞ entre o sinal de entrada exógena w(t) e o sinal de saída z(t). O procedimento de projeto proposto considera as não-linearidades da planta através dos modelos fuzzy Takagi-Sugeno. Os métodos são equacionados utilizando-se inequações matriciais lineares (LMIs), que quando factíveis, podem ser facilmente solucionados por algoritmos de convergência polinomial. Por fim, um exemplo ilustra a viabilidade da metodologia proposta.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The development of strategies for structural health monitoring (SHM) has become increasingly important because of the necessity of preventing undesirable damage. This paper describes an approach to this problem using vibration data. It involves a three-stage process: reduction of the time-series data using principle component analysis (PCA), the development of a data-based model using an auto-regressive moving average (ARMA) model using data from an undamaged structure, and the classification of whether or not the structure is damaged using a fuzzy clustering approach. The approach is applied to data from a benchmark structure from Los Alamos National Laboratory, USA. Two fuzzy clustering algorithms are compared: fuzzy c-means (FCM) and Gustafson-Kessel (GK) algorithms. It is shown that while both fuzzy clustering algorithms are effective, the GK algorithm marginally outperforms the FCM algorithm. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper is a study on the population dynamics of blowflies employing a density-dependent. non-linear mathematical model and a coupled population formalism. In this Study, we investigated the coupled population dynamics applying fuzzy subsets to model the Population trajectory. analyzing demographic parameters such as fecundity, Survival, and migration. The main results suggest different possibilities in terms of dynamic behavior produced by migration in coupled Populations between distinct environments and the rescue effect generated by the connection between populations. It was possible to conclude that environmental heterogeneity can play an important role in blowfly metapopulation systems. The implications of these results for population dynamics of blowflies are discussed.
Resumo:
Spatial analysis and fuzzy classification techniques were used to estimate the spatial distributions of heavy metals in soil. The work was applied to soils in a coastal region that is characterized by intense urban occupation and large numbers of different industries. Concentrations of heavy metals were determined using geostatistical techniques and classes of risk were defined using fuzzy classification. The resulting prediction mappings identify the locations of high concentrations of Pb, Zn, Ni, and Cu in topsoils of the study area. The maps show that areas of high pollution of Ni and Cu are located at the northeast, where there is a predominance of industrial and agricultural activities; Pb and Zn also occur in high concentrations in the northeast, but the maps also show significant concentrations of Pb and Zn in other areas, mainly in the central and southeastern parts, where there are urban leisure activities and trade centers. Maps were also prepared showing levels of pollution risk. These maps show that (1) Cu presents a large pollution risk in the north-northwest, midwest, and southeast sectors, (2) Pb represents a moderate risk in most areas, (3) Zn generally exhibits low risk, and (4) Ni represents either low risk or no risk in the studied area. This study shows that combining geostatistics with fuzzy theory can provide results that offer insight into risk assessment for environmental pollution.
Resumo:
A estimativa de conforto térmico na avicultura moderna é importante para que sistemas de climatização possam ser acionados no tempo correto, diminuindo perdas e aumentando rendimentos. Embora a literatura corrente apresente alguns índices de conforto térmico, que são aplicados para essa estimativa, estes são baseados apenas em condições do ambiente térmico e não consideram fatores importantes inerentes aos animais, tais como genética e capacidade de aclimatação, provendo, geralmente, uma estimativa inadequada do conforto térmico das aves. Este trabalho desenvolveu o Índice Fuzzy de Conforto Térmico (IFCT), com o intuito de estimar o conforto térmico de frangos de corte, considerando que o mecanismo usado pelas aves para perda de calor em ambientes fora da zona termoneutra é a vasodilatação periférica, que aumenta a temperatura superficial, e que pode ser usada como indicador do estado de conforto. O IFCT foi desenvolvido a partir de dois experimentos, que proporcionaram 108 cenários ambientais diferentes. Foram usadas imagens termográficas infravermelhas, para o registro dos dados de temperaturas superficiais das penas e da pele, e o grau de empenamento das aves. Para os mesmos cenários de ambiente térmico observados nos experimentos, foram comparados os resultados obtidos usando o IFCT e o Índice de Temperatura e Umidade (ITU). Os resultados validaram o IFCT para a estimativa do conforto térmico de frangos de corte, sendo específico na estimativa de condições de perigo térmico, usual em alojamentos em países de clima tropical. Essa característica é desejável em modelos que estimem o bem-estar térmico de frangos de corte, pois situações classificadas como perigo acarretam no dispêndio de recursos para evitar perdas produtivas.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O objetivo do artigo foi avaliar o uso da lógica fuzzy para estimar possibilidade de óbito neonatal. Desenvolveu-se um modelo computacional com base na teoria dos conjuntos fuzzy, tendo como variáveis peso ao nascer, idade gestacional, escore de Apgar e relato de natimorto. Empregou-se o método de inferência de Mamdani, e a variável de saída foi o risco de morte neonatal. Criaram-se 24 regras de acordo com as variáveis de entrada, e a validação do modelo utilizou um banco de dados real de uma cidade brasileira. A acurácia foi estimada pela curva ROC; os riscos foram comparados pelo teste t de Student. O programa MATLAB 6.5 foi usado para construir o modelo. Os riscos médios foram menores para os que sobreviveram (p < 0,001). A acurácia do modelo foi 0,90. A maior acurácia foi com possibilidade de risco igual ou menor que 25% (sensibilidade = 0,70, especificidade = 0,98, valor preditivo negativo = 0,99 e valor preditivo positivo = 0,22). O modelo mostrou acurácia e valor preditivo negativo bons, podendo ser utilizado em hospitais gerais.
Resumo:
O surgimento de novas tecnologias e serviços vem impondo mudanças substanciais ao tradicional sistema de telecomunicações. Múltiplas possibilidades de evolução do sistema fazem da etapa de planejamento um procedimento não só desejável como necessário, principalmente num ambiente de competitividade. A utilização de metodologias abrangentes e flexíveis que possam auxiliar no processo de decisão, fundadas em modelos de otimização, parece um caminho inevitável. Este artigo propõe um modelo de programação linear inteiro misto para ajudar no planejamento estratégico de sistemas de telecomunicações, e em particular da rede de acesso. Os principais componentes de custo e receita são identificados e o modelo é desenvolvido para determinar a configuração da rede (serviços, tecnologias, etc) que maximize a receita esperada pelo operador do sistema. O conceito de números fuzzy é adotado para avaliar o risco técnico-econômico em situações de imprecisão nos dados de demanda. Resultados de experimentos computacionais são apresentados e discutidos.
Resumo:
This work presents the design of a fuzzy controller with simplified architecture that use an artificial neural network working as the aggregation operator for several active fuzzy rules. The simplified architecture of the fuzzy controller is used to minimize the time processing used in the closed loop system operation, the basic procedures of fuzzification are simplified to maximum while all the inference procedures are computed in a private way. As consequence, this simplified architecture allows a fast and easy configuration of the simplified fuzzy controller. The structuring of the fuzzy rules that define the control actions is previously computed using an artificial neural network based on CMAC Cerebellar Model Articulation Controller. The operational limits are standardized and all the control actions are previously calculated and stored in memory. For applications, results and conclusions several configurations of this fuzzy controller are considered.
Resumo:
Robotic vehicle navigation in unstructured and uncertain environments is still a challenge. This paper presents the implementation of a multivalued neurofuzzy controller for autonomous ground vehicle (AGVs) in indoor environments. The control system consists of a hierarchy of mobile robot using multivalued adaptive neuro-fuzzy inference system behaviors.
Resumo:
The crossflow filtration process differs of the conventional filtration by presenting the circulation flow tangentially to the filtration surface. The conventional mathematical models used to represent the process have some limitations in relation to the identification and generalization of the system behavior. In this paper, a system based on fuzzy logic systems is developed to overcome the problems usually found in the conventional mathematical models. Imprecisions and uncertainties associated with the measurements made on the system are automatically incorporated in the fuzzy approach. Simulation results are presented to justify the validity of the proposed approach.