37 resultados para Freedom to offend
Resumo:
This paper discusses the dynamic behaviour of a nonlinear two degree-of-freedom system consisting of a harmonically excited linear oscillator weakly connected to a nonlinear attachment that behaves as a hardening Duffing oscillator. A system which behaves in this way could be a shaker (linear system) driving a nonlinear isolator. The mass of the nonlinear system is taken to be much less than that in the linear system and thus the nonlinear system has little effect on the dynamics of the linear system. Of particular interest is the situation when the linear natural frequency of the nonlinear system is less than the natural frequency of the linear system such that the frequency response curve of the nonlinear system bends to higher frequencies and thus interacts with the resonance frequency of the linear system. It is shown that for some values of the system parameters a complicated frequency response curve for the nonlinear system can occur; closed detached curves can appear as a part of the overall amplitude-frequency response. The reason why these detached curves appear is presented and approximate analytical expressions for the jump-up and jump-down frequencies of the system under investigation are given.
Resumo:
In this work, are discussed two formulations of the boundary element method - BEM to perform linear bending analysis of plates reinforced by beams. Both formulations are based on the Kirchhoffs hypothesis and they are obtained from the reciprocity theorem applied to zoned plates, where each sub-region defines a beam or a stab. In the first model the problem values are defined along the interfaces and the external boundary. Then, in order to reduce the number of degrees of freedom kinematics hypothesis are assumed along the beam cross section, leading to a second formulation where the collocation points are defined along the beam skeleton, instead of being placed on interfaces. on these formulations no approximation of the generalized forces along the interface is required. Moreover, compatibility and equilibrium conditions along the interface are automatically imposed by the integral equation. Thus, these formulations require less approximation and the total number of the degrees of freedom is reduced. In the numerical examples are discussed the differences between these two BEM formulations, comparing as well the results to a well-known finite element code.
Resumo:
This article concerns the free vibration of a single-degree-of-freedom (SDOF) system with three types of nonlinear damping. One system considered is where the spring and the damper are connected to the mass so that they are orthogonal, and the vibration is in the direction of the spring. It is shown that, provided the displacement is small, this system behaves in a similar way to the conventional SDOF system with cubic damping, in which the spring and the damper are connected so they act in the same direction. For completeness, these systems are compared with a conventional SDOF system with quadratic damping. By transforming all the equations of motion of the systems so that the damping force is proportional to the product of a displacement dependent term and velocity, then all the systems can be directly compared. It is seen that the system with cubic damping is worse than that with quadratic damping for the attenuation of free vibration. [DOI: 10.1115/1.4005010]
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Secondary caries is the main cause of direct restoration replacement. The purpose of this study was to analyze enamel adjacent to different restorative materials after in situ cariogenic challenge using polarized-light microscopy (PLM), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDS). Twelve volunteers, with a low level of dental plaque, a low level of mutans streptococci, and normal salivary flow, wore removable palatal acrylic appliances containing enamel specimens restored with Z250 composite, Freedom composite, Fuji IX glass-ionomer cement, or Vitremer resin-modified glass-ionomer for 14 days. Volunteers dripped one drop of 20% sucrose solution (n = 10) or distilled water (control group) onto each specimen 8 times per day. Specimens were removed from the appliances and submitted to PLM for examination of the lesion area (in mm(2)), followed by dehydration, gold-sputtering, and submission to SEM and EDS. The calcium (Ca) and phosphorus (P) contents were evaluated in weight per cent (%wt). Differences were found between Z250 and Vitremer, and between Z250 and FujiIX, when analyzed using PLM. Energy-dispersive X-ray analysis results showed differences between the studied materials regarding Ca %wt. In conclusion, enamel adjacent to glass-ionomer cement presented a higher Ca %wt, but this material did not completely prevent enamel secondary caries under in situ cariogenic challenge.
Resumo:
We set up a new calculational framework for the Yang-Mills vacuum transition amplitude in the Schrodinger representation. After integrating out hard-mode contributions perturbatively and performing a gauge-invariant gradient expansion of the ensuing soft-mode action, a manageable saddle-point expansion for the vacuum overlap can be formulated. In combination with the squeezed approximation to the vacuum wave functional this allows for an essentially analytical treatment of physical amplitudes. Moreover, it leads to the identification of dominant and gauge-invariant classes of gauge field orbits which play the role of gluonic infrared (IR) degrees of freedom. The latter emerge as a diverse set of saddle-point solutions and are represented by unitary matrix fields. We discuss their scale stability, the associated virial theorem and other general properties including topological quantum numbers and action bounds. We then find important saddle-point solutions (most of them solitons) explicitly and examine their physical impact. While some are related to tunneling solutions of the classical Yang-Mills equation, i.e. to instantons and merons, others appear to play unprecedented roles. A remarkable new class of IR degrees of freedom consists of Faddeev-Niemi type link and knot solutions, potentially related to glueballs.
Resumo:
A calculational scheme is developed to evaluate chiral corrections to properties of composite baryons with composite pions. The composite baryons and pions are bound states derived from a microscopic chiral quark model. The model is amenable to standard many-body techniques such as the BCS and random phase approximation formalisms. An effective chiral model involving only hadronic degrees of freedom is derived from the macroscopic quark model by projection onto hadron states. Chiral loops are calculated using the effective hadronic Hamiltonian. A simple microscopic confining interaction is used to illustrate the derivation of the pion-nucleon form factor and the calculation of picnic self-energy corrections to the nucleon and Delta (1232) masses.
Resumo:
This paper investigates the usefulness of the generator coordinate method (GCM) for treating the dynamics of a reaction coordinate coupled to a bath of harmonic degrees of freedom. Models for the unimolecular dissociation and isomerization process (proton transfer) are analyzed. The GCM results, presented in analytical form, provide a very good description and are compared to other methods Like the basis set method and multiconfiguration time dependent self-consistent field. (C) 1998 American Institute of Physics. [S0021-9606(98)50934-8].
Resumo:
The dynamics of a pair of satellites similar to Enceladus-Dione is investigated with a two-degrees-of-freedom model written in the domain of the planar general three-body problem. Using surfaces of section and spectral analysis methods, we study the phase space of the system in terms of several parameters, including the most recent data. A detailed study of the main possible regimes of motion is presented, and in particular we show that, besides the two separated resonances, the phase space is replete of secondary resonances.
Resumo:
In this work, the occurrence of chaos (homoclinic scene) is verified in a robotic system with two degrees of freedom by using Poincare-Mel'nikov method. The studied problem was based on experimental results of a two-joint planar manipulator-first joint actuated and the second joint free-that resides in a horizontal plane. This is the simplest model of nonholonomic free-joint manipulators. The purpose of the present study is to verify analytically those results and to suggest a control strategy.
Resumo:
This paper considers the dynamics of two planets, as the planets B and C of the pulsar PSR B1257+12, near a 3/2 mean-motion resonance. A two-degrees-of-freedom model, in the framework of the general three-body planar problem, is used and the solutions are analyzed through surfaces of section and Fourier techniques in the full phase space of the system.
Resumo:
We briefly discuss four different possible types of transitions from quark to hadronic matter and their characteristic signatures in terms of correlations. We also highlight the effects arising from mass modification of hadrons in hot and dense hadronic matter, as well as their quantum statistical consequences: the appearance of squeezed quantum states and the associated experimental signatures, i.e., the back-to-back correlations of particle-antiparticle pairs. We briefly review the theoretical results of these squeezed quanta, generated by in-medium modified masses, starting from the first indication of the existence of surprising particle-antiparticle correlations, and ending by considering the effects of chiral dynamics on these correlation patterns. Nevertheless, a prerequisite for such a signature is the experimental verification of its observability. Therefore, the experimental observation of back-to-back correlations in high energy heavy ion reactions would be a unique signature, proving the existence of in-medium mass modification of hadronic states. on the other hand, their disappearance at some threshold centrality or collision energy would indicate that the hadron formation mechanism would have qualitatively changed: asymptotic hadrons above such a threshold are not formed from medium modified hadrons anymore, but rather by new degrees of freedom characterizing the medium. Furthermore, the disappearance of the squeezed BBC could also serve as a signature of a sudden, non-equilibrium hadronization scenario from a supercooled quark-gluon plasma phase.
Resumo:
In this work, the plate bending formulation of the boundary element method (BEM), based on the Reissner's hypothesis, is extended to the analysis of plates reinforced by rectangular beams. This composed structure is modelled by a zoned plate, being the beams represented by narrow sub-regions with larger thickness. The integral equations are derived by applying the weighted residual method to each sub-region, and summing them to get the equation for the whole plate. Equilibrium and compatibility conditions are automatically imposed by the integral equations, which treat this composed structure as a single body. In order to decrease the number of degrees of freedom, some approximations are considered for both displacements and tractions along the beam width. The accuracy of the proposed model is illustrated by simple examples whose exact solution are known as well as by more complex examples whose numerical results are compared with a well-known finite element code.
Resumo:
The present paper studies a system comprised of two blocks connected by springs and dampers, and a DC motor with limited power supply fixed on a block, characterizing a non-ideal problem. This DC motor exciting the system causes interactions between the motor and the structure supporting it. Because of that, the non-ideal mathematical formulation of the problem has one and a half extra degree of freedom than the ideal one. A suitable choice of physical parameters leads to internal resonance conditions, that is, its natural frequencies are multiple of each other, by a known integer quantity. The purpose here is to study the dynamic behavior of the system using an analytical method based on perturbation techniques. The literature shows that the averaging method is the more flexible method concerning non-ideal problems. Summarizing, an steady state solution in amplitude and phase coordinates was obtained with averaging method showing the dependence of the structure amplitudes with the rotation frequency of the motor. Moreover, this solution shows that on of the amplitude coordinates has influence in the determination of the stationary rotation frequency. The analytical solution obtained shows the presence of the rotation frequency in expressions representing the oscillations of the structure, and the presence of amplitude coordinates in expressions describing the dynamic motion of the DC motor. These characteristics show the influence not only of the motor on structure but also of the response of the structure on dynamical behavior of the motor. Copyright © 2005 by ASME.
Resumo:
This work focuses on applying fuzzy control embedded in microcontrollers in an experimental apparatus using magnetorheological fluid damper. The non-linear behavior of the magnetorheological dampers associated with the parametric variations on vehicle suspension models corroborate the use of the fuzzy controllers. The fundamental formulation of this controller is discussed and its performance is shown through numeric simulations. An experimental apparatus representing a two degree of freedom system containing a magnetorheological damper is used to identify the main parameters and to evaluate the performance of the closed-loop system with the embedded low-cost microcontroller-based fuzzy controller. © 2013 Brazilian Society for Automatics - SBA.