93 resultados para Extracellular Glutamate
Resumo:
The excitatory amino acid L-glutamate injected into the nucleus of the solitary tract (NTS) in unanesthetized rats similar to peripheral chemoreceptor activation increases mean arterial pressure (MAP) and reduces heart rate. In this study, we investigated the effects of acute (I day) and chronic (15 days) electrolytic lesions of the preoptic-periventricular tissue surrounding the anteroventral third ventricle (AV3V region) on the pressor and bradycardic responses induced by injections of L-glutamate into the NTS or peripheral chemoreceptor activation in unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the NTS were used. Differently from the pressor responses (28 +/- 3 mm Hg) produced by injections into the NTS of sham-lesioned rats, L-glutamate (5 nmol/ 100 nl) injected into the NTS reduced MAP (-26 +/- 8 mm Hg) or produced no effect (2 7 turn Hg) in acute and chronic AV3V-lesioned rats, respectively. The bradycardia to L-glutamate into the NTS and the cardiovascular responses to chemoreflex activation with intravenous potassium cyanide or to baroreflex activation with intravenous phenylephrine or sodium nitroprusside were not modified by AV3V lesions. The results show that the integrity of the AV3V region is essential for the pressor responses to L-glutamate into the NTS but not for the pressor responses to chemoreflex activation, suggesting dissociation between the central mechanisms involved in these responses. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Peripheral chemoreflex activation with potassium cyanide (KCN) in awake rats or in the working heart-brainstem preparation (WHBP) produces: (a) a sympathoexcitatory/pressor response; (b) bradycardia; and (c) an increase in the frequency of breathing. Our main aim was to evaluate neurotransmitters involved in mediating the sympathoexcitatory component of the chemoreflex within the nucleus tractus solitarii (NTS). In previous studies in conscious rats, the reflex bradycardia, but not the pressor response, was reduced by antagonism of either ionotropic glutamate or purinergic P2 receptors within the NTS. In the present study we evaluated a possible dual role of both P2 and NMDA receptors in the NTS for processing the sympathoexcitatory component (pressor response) of the chemoreflex in awake rats as well as in the WHBP. Simultaneous blockade of ionotropic glutamate receptors and P2 receptors by sequential microinjections of kynurenic acid (KYN, 2 nmol (50 nl)(-1)) and pyridoxalphosphate-6-azophenyl-2',4'-disulphonate (PPADS, 0.25 nmol (50 nl)(-1)) into the commissural NTS in awake rats produced a significant reduction in both the pressor (+38 +/- 3 versus +8 +/- 3 mmHg) and bradycardic responses (-172 +/- 18 versus -16 +/- 13 beats min(-1); n = 13), but no significant changes in the tachypnoea measured using plethysmography (270 +/- 30 versus 240 +/- 21 cycles min(-1), n = 7) following chemoreflex activation in awake rats. Control microinjections of saline produced no significant changes in these reflex responses. In WHBP, microinjection of KYN (2 nmol (20 nl)(-1)) and PPADS (1.6 nmol (20 nl)(-1)) into the commissural NTS attenuated significantly both the increase in thoracic sympathetic activity (+52 +/- 2% versus +17 +/- 1%) and the bradycardic response (-151 +/- 17 versus -21 +/- 3 beats min(-1)) but produced no significant changes in the increase of the frequency of phrenic nerve discharge (+0.24 +/- 0.02+0.20 +/- 0.02 Hz). The data indicate that combined microinjections of PPADS and KYN into the commissural NTS in both awake rats and the WHBP are required to produce a significant reduction in the sympathoexcitatory response (pressor response) to peripheral chemoreflex activation. We conclude that glutamatergic and purinergic mechanisms are part of the complex neurotransmission system of the sympathoexcitatory component of the chemoreflex at the level of the commissural NTS.
Resumo:
Neurons from the rostral ventrolateral medulla (RVLM) directly activate sympathetic preganglionic neurons in the spinal cord. Hypertensive responses and sympathetic activation produced by different stimuli are strongly affected by lesions of the preoptic periventricular tissue surrounding the anteroventral third ventricle (AV3V region). Therefore, in the present study, we investigated the effects of acute (1 day) and chronic (IS days) electrolytic lesions of the AV3V region on the pressor responses produced by injections of the excitatory amino acid L-glutamate into the RVLM of unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula. implanted into the RVLM were used. The pressor responses produced by injections of L-glutamate (1, 5 and 10 nmol/100 nl) into the RVLM were reduced 1 day (9 +/- 4, 39 +/- 6 and 37 +/- 4 mm Hg, respectively) and 15 days after AV3V lesions (13 +/- 6, 39 +/- 4 and 43 +/- 4 mm Hg, respectively, vs. sham lesions: 29 +/- 3, 50 +/- 2 and 58 +/- 3 mm Hg, respectively). Injections of L-glutamate into the RVLM in sham or AV3V-lesioned rats produced no significant change in the heart rate (HR). Baroreflex bradycardia and tachycardia produced by iv phenylephrine or sodium nitroprusside, respectively, and the pressor and bradycardic responses to chemoreflex activation with iv potassium cyanide were not modified by AV3V lesions. The results suggest that signals from the AV3V region are important for sympathetic activation induced by L-glutamate into the RVLM. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Injections of the excitatory amino acid L-glutamate (L-glu) into the rostral ventrolateral medulla (RVLM) directly activate the sympathetic nervous system and increase mean arterial pressure (MAP). A previous study showed that lesions of the anteroventral third ventricle region in the forebrain reduced the pressor response to L-glu into the RVLM. In the present study we investigated the effects produced by injections of atropine (cholinergic antagonist) into the lateral ventricle (LV) on the pressor responses produced by L-ghl into the RVLM. Male Holtzman rats (280-320 g, n=5 to 12/group) with stainless steel cannulas implanted into the RVLM, LV or 4th ventricle (4th V) were used. MAP and heart rate (HR) were recorded in unanesthetized rats. After saline into the LV, injections of L-glu (5 nmol/100 nl) into the RVLM increased MAP (51 +/- 4 mm Hg) without changes in HR. Atropine (4 nmol/1 PI) injected into the LV reduced the pressor responses to L-glu into the RVLM (36 +/- 5 mm Hg), However, atropine at the same dose into the 4th V or directly into the RVLM did not modify the pressor responses to L-glu into the RVLM (45 +/- 2 and 49 +/- 4 mm Hg, respectively, vs. control: 50 +/- 4mmHg). Central cholinergic blockade did not affect baro and chemoreflex nor the basal MAP and HR. The results suggest that cholinergic mechanisms probably from forebrain facilitate or modulate the pressor responses to L-glu into the RVLM. The mechanism is activated by acetylcholine in the forebrain, however, the neurotransmitter released in the RVLM to facilitate the effects of glutamate is not acetylcholine. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Results from our laboratory revealed propolis activity on Giardia trophozoites proliferation. Since therapeutic agents can inhibit the activity of proteases related to relevant biologic and physiologic processes of parasites, this study was undertaken to characterise the proteolytic activity of excretory/secretory products (ESP) of trophozoites treated with propolis. ESP was obtained from culture supernatants of trophozoites exposed to 250 and 500 mu g mL(-1) of propolis. ESP were tested in sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the protein profiles and the protease activity was assayed in gelatin-containing gels. Synthetic inhibitors were used to characterise the protease classes. Treated and non-treated ESP showed a similar protein and hydrolysis pattern. A simple pattern of protein composed by five evident bands of approximately 167, 132, 79, 61 and 51 kDa was found, and the zymograms comprised hydrolysis zones distributed from > 170 to 23 kDa. No inhibition was seen on protease activity of propolis-treated trophozoites, whose hydrolysis pattern was similar to control. One may conclude that both ESP degraded gelatin and the activity was predominantly due to cysteine proteases. Although propolis had no effect on the proteolytic activity, further studies could identify the active constituents responsible for propolis antigiardial activity and their mechanisms of action.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The production of extracellular acid proteases from Aspergillus clavatus was evaluated in a culture filtrate medium, with different carbon and nitrogen sources. The fungus was cultivated at three different temperatures during 10 days. The proteolytic activity was determined on haemoglobin pH 5.0 at 37 degreesC. The highest acid proteolytic activity (80 U/ml) was observed in culture medium containing glucose and gelatin at 1% (w/v) at 30 degreesC at the third day of incubation. Cultures developed in Vogel medium with glucose at 2% (w/v) showed at about 45% of proteolytic activity when compared to the cultures with 1% of the same sugar. The optimum pH of enzymatic activity was 2.0 and the enzyme was stable at pH values ranging from 2.0 to 4.0. The optimum temperature was 40 degreesC and the half-lives at 40, 45 and 50 degreesC were 30, 10 and 5 min, respectively.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)