34 resultados para Exactly Solvable Model
Resumo:
In this work we solve the Dirac equation by constructing the exact bound state solutions for a mixing of vector and scalar generalized Hartmann potentials. This is done provided the vector potential is equal to or minus the scalar potential. The cases of some quasi-exactly solvable and Morse-like potentials are briefly commented. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The intrinsically relativistic problem of neutral fermions subject to kink-like potentials (similar to tanh gamma x) is investigated and the exact bound-state solutions are found. Apart from the lonely hump solutions for E = +/- mc(2), the problem is mapped into the exactly solvable Sturm-Liouville problem with a modified Poschl-Teller potential. An apparent paradox concerning the uncertainty principle is solved by resorting to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Three dimensional exactly solvable quantum potentials for which an extra term of form 1/r(2) has been added are shown to maintain their functional form which allows the construction of the Hamiltonian hierarchy and the determination of the spectra of eigenvalues and eigenfunctions within the Supersymmetric Quantum Mechanics formalism. For the specific cases of the harmonic oscillator and the Coulomb potentials, known as pseudo-harmonic oscillator and pseudo-Coulomb potentials, it is shown here that the inclusion of the new term corresponds to rescaling the angular momentum and it is responsible for maintaining their exact solvability.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
In this work we develop an approach to obtain analytical expressions for potentials in an impenetrable box. In this kind of system the expression has the advantage of being valid for arbitrary values of the box length, and respect the correct quantum limits. The similarity of this kind of problem with the quasi exactly solvable potentials is explored in order to accomplish our goals. Problems related to the break of symmetries and simultaneous eigenfunctions of commuting operators are discussed.
Resumo:
Ladder operators can be constructed for all potentials that present the integrability condition known as shape invariance, satisfied by most of the exactly solvable potentials. Using the superalgebra of supersymmetric quantum mechanics, we construct the ladder operators for two exactly solvable potentials that present a subtle hidden shape invariance.
Resumo:
This comment criticizes the recently published approach of Alhaidari for solving relativistic problems. It is shown that his gauge considerations are inaccurate and that the class of exactly solvable relativistic problems is not as large as the author claims.
Resumo:
In this work we introduce a mapping between the so-called deformed hyperbolic potentials, which are presenting a continuous interest in the last few years, and the corresponding nondeformed ones. As a consequence, we conclude that these deformed potentials do not pertain to a new class of exactly solvable potentials, but to the same one of the corresponding nondeformed ones. Notwithstanding, we can reinterpret this type of deformation as a kind of symmetry of the nondeformed potentials. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We analyze the integrability properties of models defined on the symmetric space SU(2)/U(1) in 3 + 1 dimensions, using a recently proposed approach for integrable theories in any dimension. We point out the key ingredients for a theory to possess an infinite number of local conservation laws, and discuss classes of models with such property, We propose a 3 + 1-dimensional, relativistic invariant field theory possessing a toroidal soliton solution carrying a unit of topological charge given by the Hopf map. Construction of the action is guided by the requirement that the energy of static configuration should be scale invariant. The solution is constructed exactly. The model possesses an infinite number of local conserved currents. The method is also applied to the Skyrme-Faddeev model, and integrable submodels are proposed. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
The intrinsically relativistic problem of spinless particles subject to a general mixing of vector and scalar kink- like potentials (similar to tanh gamma x) is investigated. The problem is mapped into the exactly solvable Sturm - Liouville problem with the Rosen - Morse potential and exact bounded solutions for particles and antiparticles are found. The behavior of the spectrum is discussed in some detail. An apparent paradox concerning the uncertainty principle is solved by recurring to the concept of effective Compton wavelength.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
lsoscalar (T = 0) plus isovector (T = 1) pairing Hamiltonian in LS-coupling. which is important for heavy N = Z nuclei, is solvable in terms of a SO(8) Lie algebra for three special values of the mixing parameter that measures the competition between the T = 0 aid T = 1 pairing. The SO(8) algebra is generated, amongst others, by the S = 1, T = 0 and S = 0, T = 1 pair creation and annihilation operators and corresponding to the three values of the mixing parameter, there are three chains of subalgebras: SO(8) superset of SOST (6) superset of SOS(3) circle times SOT(3), SO(8) superset of [SOS(5) superset of SOS(3)] circle times SOT(3) and SO(8) superset of [SOT(5) superset of SOT(3)] circle times SOS(3). Shell model Lie algebras, with only particle number conserving generators, that are complementary to these three chains of subalgebras are identified and they are used in the classification of states for a given number of nucleons. The classification problem is solved explicitly tor states with SO(8) seniority nu = 0, 1, 2, 3 and 4. Using them, hand structures in isospin space are identified for states with nu = 0, 1, 2 and 3. (c) 2005 Elsevier B.V. All rights reserved.