6 resultados para Exactly Solvable Model
em CaltechTHESIS
Resumo:
In this thesis, I will discuss how information-theoretic arguments can be used to produce sharp bounds in the studies of quantum many-body systems. The main advantage of this approach, as opposed to the conventional field-theoretic argument, is that it depends very little on the precise form of the Hamiltonian. The main idea behind this thesis lies on a number of results concerning the structure of quantum states that are conditionally independent. Depending on the application, some of these statements are generalized to quantum states that are approximately conditionally independent. These structures can be readily used in the studies of gapped quantum many-body systems, especially for the ones in two spatial dimensions. A number of rigorous results are derived, including (i) a universal upper bound for a maximal number of topologically protected states that is expressed in terms of the topological entanglement entropy, (ii) a first-order perturbation bound for the topological entanglement entropy that decays superpolynomially with the size of the subsystem, and (iii) a correlation bound between an arbitrary local operator and a topological operator constructed from a set of local reduced density matrices. I also introduce exactly solvable models supported on a three-dimensional lattice that can be used as a reliable quantum memory.
Resumo:
The topological phases of matter have been a major part of condensed matter physics research since the discovery of the quantum Hall effect in the 1980s. Recently, much of this research has focused on the study of systems of free fermions, such as the integer quantum Hall effect, quantum spin Hall effect, and topological insulator. Though these free fermion systems can play host to a variety of interesting phenomena, the physics of interacting topological phases is even richer. Unfortunately, there is a shortage of theoretical tools that can be used to approach interacting problems. In this thesis I will discuss progress in using two different numerical techniques to study topological phases.
Recently much research in topological phases has focused on phases made up of bosons. Unlike fermions, free bosons form a condensate and so interactions are vital if the bosons are to realize a topological phase. Since these phases are difficult to study, much of our understanding comes from exactly solvable models, such as Kitaev's toric code, as well as Levin-Wen and Walker-Wang models. We may want to study systems for which such exactly solvable models are not available. In this thesis I present a series of models which are not solvable exactly, but which can be studied in sign-free Monte Carlo simulations. The models work by binding charges to point topological defects. They can be used to realize bosonic interacting versions of the quantum Hall effect in 2D and topological insulator in 3D. Effective field theories of "integer" (non-fractionalized) versions of these phases were available in the literature, but our models also allow for the construction of fractional phases. We can measure a number of properties of the bulk and surface of these phases.
Few interacting topological phases have been realized experimentally, but there is one very important exception: the fractional quantum Hall effect (FQHE). Though the fractional quantum Hall effect we discovered over 30 years ago, it can still produce novel phenomena. Of much recent interest is the existence of non-Abelian anyons in FQHE systems. Though it is possible to construct wave functions that realize such particles, whether these wavefunctions are the ground state is a difficult quantitative question that must be answered numerically. In this thesis I describe progress using a density-matrix renormalization group algorithm to study a bilayer system thought to host non-Abelian anyons. We find phase diagrams in terms of experimentally relevant parameters, and also find evidence for a non-Abelian phase known as the "interlayer Pfaffian".
Resumo:
The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.
Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.
Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.
Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.
Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.
Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.
Resumo:
The works presented in this thesis explore a variety of extensions of the standard model of particle physics which are motivated by baryon number (B) and lepton number (L), or some combination thereof. In the standard model, both baryon number and lepton number are accidental global symmetries violated only by non-perturbative weak effects, though the combination B-L is exactly conserved. Although there is currently no evidence for considering these symmetries as fundamental, there are strong phenomenological bounds restricting the existence of new physics violating B or L. In particular, there are strict limits on the lifetime of the proton whose decay would violate baryon number by one unit and lepton number by an odd number of units.
The first paper included in this thesis explores some of the simplest possible extensions of the standard model in which baryon number is violated, but the proton does not decay as a result. The second paper extends this analysis to explore models in which baryon number is conserved, but lepton flavor violation is present. Special attention is given to the processes of μ to e conversion and μ → eγ which are bound by existing experimental limits and relevant to future experiments.
The final two papers explore extensions of the minimal supersymmetric standard model (MSSM) in which both baryon number and lepton number, or the combination B-L, are elevated to the status of being spontaneously broken local symmetries. These models have a rich phenomenology including new collider signatures, stable dark matter candidates, and alternatives to the discrete R-parity symmetry usually built into the MSSM in order to protect against baryon and lepton number violating processes.
Resumo:
STEEL, the Caltech created nonlinear large displacement analysis software, is currently used by a large number of researchers at Caltech. However, due to its complexity, lack of visualization tools (such as pre- and post-processing capabilities) rapid creation and analysis of models using this software was difficult. SteelConverter was created as a means to facilitate model creation through the use of the industry standard finite element solver ETABS. This software allows users to create models in ETABS and intelligently convert model information such as geometry, loading, releases, fixity, etc., into a format that STEEL understands. Models that would take several days to create and verify now take several hours or less. The productivity of the researcher as well as the level of confidence in the model being analyzed is greatly increased.
It has always been a major goal of Caltech to spread the knowledge created here to other universities. However, due to the complexity of STEEL it was difficult for researchers or engineers from other universities to conduct analyses. While SteelConverter did help researchers at Caltech improve their research, sending SteelConverter and its documentation to other universities was less than ideal. Issues of version control, individual computer requirements, and the difficulty of releasing updates made a more centralized solution preferred. This is where the idea for Caltech VirtualShaker was born. Through the creation of a centralized website where users could log in, submit, analyze, and process models in the cloud, all of the major concerns associated with the utilization of SteelConverter were eliminated. Caltech VirtualShaker allows users to create profiles where defaults associated with their most commonly run models are saved, and allows them to submit multiple jobs to an online virtual server to be analyzed and post-processed. The creation of this website not only allowed for more rapid distribution of this tool, but also created a means for engineers and researchers with no access to powerful computer clusters to run computationally intensive analyses without the excessive cost of building and maintaining a computer cluster.
In order to increase confidence in the use of STEEL as an analysis system, as well as verify the conversion tools, a series of comparisons were done between STEEL and ETABS. Six models of increasing complexity, ranging from a cantilever column to a twenty-story moment frame, were analyzed to determine the ability of STEEL to accurately calculate basic model properties such as elastic stiffness and damping through a free vibration analysis as well as more complex structural properties such as overall structural capacity through a pushover analysis. These analyses showed a very strong agreement between the two softwares on every aspect of each analysis. However, these analyses also showed the ability of the STEEL analysis algorithm to converge at significantly larger drifts than ETABS when using the more computationally expensive and structurally realistic fiber hinges. Following the ETABS analysis, it was decided to repeat the comparisons in a software more capable of conducting highly nonlinear analysis, called Perform. These analyses again showed a very strong agreement between the two softwares in every aspect of each analysis through instability. However, due to some limitations in Perform, free vibration analyses for the three story one bay chevron brace frame, two bay chevron brace frame, and twenty story moment frame could not be conducted. With the current trend towards ultimate capacity analysis, the ability to use fiber based models allows engineers to gain a better understanding of a building’s behavior under these extreme load scenarios.
Following this, a final study was done on Hall’s U20 structure [1] where the structure was analyzed in all three softwares and their results compared. The pushover curves from each software were compared and the differences caused by variations in software implementation explained. From this, conclusions can be drawn on the effectiveness of each analysis tool when attempting to analyze structures through the point of geometric instability. The analyses show that while ETABS was capable of accurately determining the elastic stiffness of the model, following the onset of inelastic behavior the analysis tool failed to converge. However, for the small number of time steps the ETABS analysis was converging, its results exactly matched those of STEEL, leading to the conclusion that ETABS is not an appropriate analysis package for analyzing a structure through the point of collapse when using fiber elements throughout the model. The analyses also showed that while Perform was capable of calculating the response of the structure accurately, restrictions in the material model resulted in a pushover curve that did not match that of STEEL exactly, particularly post collapse. However, such problems could be alleviated by choosing a more simplistic material model.
Resumo:
In this thesis we are concerned with finding representations of the algebra of SU(3) vector and axial-vector charge densities at infinite momentum (the "current algebra") to describe the mesons, idealizing the real continua of multiparticle states as a series of discrete resonances of zero width. Such representations would describe the masses and quantum numbers of the mesons, the shapes of their Regge trajectories, their electromagnetic and weak form factors, and (approximately, through the PCAC hypothesis) pion emission or absorption amplitudes.
We assume that the mesons have internal degrees of freedom equivalent to being made of two quarks (one an antiquark) and look for models in which the mass is SU(3)-independent and the current is a sum of contributions from the individual quarks. Requiring that the current algebra, as well as conditions of relativistic invariance, be satisfied turns out to be very restrictive, and, in fact, no model has been found which satisfies all requirements and gives a reasonable mass spectrum. We show that using more general mass and current operators but keeping the same internal degrees of freedom will not make the problem any more solvable. In particular, in order for any two-quark solution to exist it must be possible to solve the "factorized SU(2) problem," in which the currents are isospin currents and are carried by only one of the component quarks (as in the K meson and its excited states).
In the free-quark model the currents at infinite momentum are found using a manifestly covariant formalism and are shown to satisfy the current algebra, but the mass spectrum is unrealistic. We then consider a pair of quarks bound by a potential, finding the current as a power series in 1/m where m is the quark mass. Here it is found impossible to satisfy the algebra and relativistic invariance with the type of potential tried, because the current contributions from the two quarks do not commute with each other to order 1/m3. However, it may be possible to solve the factorized SU(2) problem with this model.
The factorized problem can be solved exactly in the case where all mesons have the same mass, using a covariant formulation in terms of an internal Lorentz group. For a more realistic, nondegenerate mass there is difficulty in covariantly solving even the factorized problem; one model is described which almost works but appears to require particles of spacelike 4-momentum, which seem unphysical.
Although the search for a completely satisfactory model has been unsuccessful, the techniques used here might eventually reveal a working model. There is also a possibility of satisfying a weaker form of the current algebra with existing models.