363 resultados para Erbium doped


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A growing number of applications are calling for compact laser sources operating in the mid-infrared spectral region. A review of our recent work on monolithic fiber lasers (FL) based either on the use of rare-earth fluoride fibers or on Raman gain in both fluoride and chalcogenide glass fibers is presented. Accordingly, an erbium-doped double clad fluoride glass all-FL operating in the vicinity of 3 μm is shown. In addition, we present recent results on the first demonstrations of both fluoride and chalcogenide Raman fiber lasers operating at 2.23 and 3.34 μm, respectively. It is shown that based on this approach, monolithic FLs could be developed to cover the whole 2 to 4 μm spectral band.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aware of the difficulties in applying sol-gel technology on the preparation of thin films suitable for optical devices, the present paper reports on the preparation of crack-free erbium- and ytterbium-doped silica: hafnia thick films onto silica on silicon. The film was obtained using a dispersion of silica-hafnia nanoparticles into a binder solution, spin-coating, regular thermal process and rapid thermal process. The used methodology has allowed a significant increase of the film thickness. Based on the presented results good optical-quality films with the required thickness for a fiber matching single mode waveguide were obtained using the erbium- and ytterbium-activated sol-gel silica:hafnia system. The prepared film supports two transversal electric modes at 1550 nm and the difference between the transversal electric mode and the transversal magnetic mode is very small, indicating low birefringence. Photoluminescence of the I-4(13/2) -> I-4(15/2) transition of erbium ions shows a broad band centered at 1.53 mu m with full width at a half maximum of 28 nm. Up-conversion emission was carried out under different pump laser powers, and just one transition at red region was observed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work reports on the preparation of erbium and ytterbium co-doped SiO2:HfO2 single mode planar waveguides using the sol-gel method. Silica nanoparticles were prepared from tetraethylorthosilicate in basic media and the films were characterized by transmission electron microscopy, scanning electron microscopy, mechanical profilometry, M-lines spectroscopy based on prism coupling technique, X-ray diffractometry, infrared spectroscopy and photoluminescence spectroscopy. The film thicknesses and the refractive indexes were adjusted in order to satisfy a future efficient coupling to single mode optical fiber. Films suitable for both weak and strong light confinement were prepared varying hafnia concentration into the silica matrix. The lifetime values of erbium I-4(13/2) state were measured in order to investigate the influence of clustering and hydroxyl groups on the fluorescence quantum efficiency of the I-4(13/2) level, responsible for the emission at 1.55 mu m attributed to the I-4(13/2) -> I-4(15/2) transition. The high lifetime values suggest the absence of erbium clusters and the elimination of hydroxyl groups by rapid thermal process. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Er(3+) doped (100-x)SiO(2)-xZrO(2) planar waveguides were prepared by the sol-gel route, with x ranging from 10 up to 30 mol%. Multilayer films doped with 0.3 mol% Er(3+) ions were deposited on fused quartz substrates by the dip-coating technique. The thickness and refractive index were measured by m-line spectroscopy at different wavelengths. The fabrication protocol was optimized in order to confine one propagating mode at 1.5 mu m. Photoluminescence in the near and visible region indicated a crystalline local environment for the Er(3+) ion. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoconductivity of SnO2 sol-gel films is excited, at low temperature, by using a 266 nm line-fourth harmonic-of a Nd:YAG laser. This line has above bandgap energy and promotes generation of electron-hole pairs, which recombines with oxygen adsorbed at grain boundary. The conductivity increases up to 40 times. After removing the illumination on an undoped SnO2 film, the conductivity remains unchanged, as long as the temperature is kept constant. Adsorbed oxygen ions recombine with photogenerated holes and are continuously evacuated from the system, leaving a net concentration of free electrons into the material, responsible for the increase in the conductivity. For Er doped SnO2, the excitation of conductivity by the laser line has similar behavior, however after removing illumination, the conductivity decreases with exponential-like decay. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Luminescent SnO2: x%mol Er3+ (x=0.1-2.0) thin films have been spin coated on borosilicate and silica substrates from water colloidal suspensions that could be prepared containing up to 40% in weight SnO2 nanocrystalline powders. High Resolution Transmission Electron Microscopy results show the well known SnO2 cassiterite structure and nanocrystallites around 10 nm in diameter, corroborating results from X-ray diffraction. Mono and multi layers have been prepared from the stable colloidal suspensions and films thickness was observed to increase linearly, up to 200 nm, with the colloidal suspensions nanoparticles amount. Excitation and emission spectra have been measured and Er3+ ions were found to be essentially incorporated into the cassiterite structure, substituting for Sn4+, for doping concentration lower than 0.05 mol%. Er3+ ions also appear segregated at the grains surface for higher doping concentration. The optical parameters (refractive index, thickness and propagating modes) of a waveguide sample were measured at 632.8 and 543.4 nm by the prism coupling technique. A monomodal waveguide was obtained with attenuation loss of 3.5 dB/cm along a 2.5 cm optical path.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silica-based sol-gel waveguides activated by Er3+ ions are attractive materials for integrated optic devices. 70SiO(2)-30HfO(2) planar waveguides, doped with Er3+ concentrations ranging from 0.01 to 4 mol%, were prepared by sol-get route. The films were deposited on v-SiO2 and silica-on-silicon substrates, using dip-coating technique. The waveguides show a homogeneous surface morphology, high densification degree and uniform refractive index across the thickness. Emission in the C-telecommunication band was observed at room temperature for ill the samples upon excitation at 980 nm. The shape is found to be almost independent on erbium content, with a FWHM between 44 and 48 nm. The I-4(13/2) level decay curves presented a single-exponential profile, with a lifetime ranging between 1.1 and 6.7 ms, depending on the erbium concentration. The waveguide deposited on silica-on-silicon substrate supports one single propagation mode at 1.5 mum with a confinement coefficient of 0.85, and a losses of about 0.8 dB/cm at 632.8 nm. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erbium-activated silica-based planar waveguides were prepared by three different technological routes: RF-sputtering, sol-gel and ion exchange. Various parameters of preparation were varied in order to optimize the waveguides for operation in the NIR region. Particular attention was devoted to the minimization of the losses and the increase of the luminescence efficiency of the metastable I-4(13/2) state of the Er3+ ion. Waveguide properties were determined by m-line spectroscopy and loss measurements. Waveguide Raman and luminescence spectroscopy were used to obtain information about the structure of the prepared films and about the dynamical processes related to the luminescence of the Er3+ ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

70SiO(2)-30HfO(2) planar waveguides, doped with Er(3+) concentrations ranging from 0.3 to 1 mol %, were prepared by sol-gel route, using dip-coating deposition on silica glass substrates. The waveguides show high densification degree, effective intermingling of the two components of the film, and uniform surface morphology. Propagation losses of about 1 dB/cm were measured at 632.8 nm. When pumped with 987 or 514.5 nm continuous-wave laser light, the waveguides show the (4)I(13/2)-->(4)I(15/2) emission band with a bandwidth of 48 nm. The spectral features are found independent both on erbium content and excitation wavelength. The (4)I(13/2) level decay curves presented a single-exponential profile, with a lifetime between 2.9 and 5.0 ms, depending on the erbium concentration. (C) 2002 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the observation of negative nonlinear absorption in fluoroindate glasses doped with erbium ions. The pumping wavelength is 800 nm which is doubly resonant with Er3+ ions transitions. A large nonlinear intensity dependence of the optical transmittance and strong upconverted fluorescence are obtained. The dependence of the upconverted fluorescence intensity with the laser power is described by a system of coupled-rate equations for the energy levels' populations. (C) 1998 American Institute of Physics. [S0021-8979(98)07816-5].