33 resultados para Engineering geology.
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
This study evaluated alternatives for producing erosion susceptibility maps, considering different weight combinations for an environment's attributes, according to four different points of views. The attributes considered were landform, steepness, soils, rocks and land occupation. Considered alternatives were: (1) equal weights, more traditional approach, (2) different weights, according to a previous study in the area, (3) different weights, based on other works in the literature, and (4) different weights based on the analytical hierarchical process. The area studied included the Prosa Basin located in Campo Grande-Mato Grosso do Sul State, Brazil. The results showed that the assessed alternatives can be used together or in different stages of studies aiming at urban planning and decision-making on the interventions to be applied.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Geotechnical Mapping is an extreme important tool for the urban planning, so the public authorities can establish guidelines for medium and long term for a better life conditions for the population. The division region between the cities of Americana and Santa Bárbara D’Oeste has an intense conurbation problem, which is causing problems of occupation in risks areas on environmental terms. In this context this project has as an objective the elaboration of a Geotechnical Map from the sub- basins of Sossego and Barracão rivers, whicht are located in between the area of the two cities, and presents some of the process causes of the conurbation problem. For this study, the following steps were proposed: bibliographic and topographic maps research for better knowledge from the theme and the area, and also preparing cartographic basis; making of preliminary geotechnical area map with a 1:10.000 scale, gather all the information acquired at the previous step and compartmentation of the area; field step to collect more information and soil for the laboratory analysis, objecting the characterization of the geotechnical unities; lab analysis; final geotechnical map preparation; and final report elaboration. The final product of this study is the Final Geotechnical Map, with a 1:10.000 scale, and the principal objective is to help the urban planning
Resumo:
Geological-geotechnical problems affecting escarps as well as embankment and fill slopes of roads and motorways may generate different types of unsteadiness, which are mainly arisen from the deficient knowledge about the physical environment. This results in unsuitable engineering projects and inadequate executions, which can be worsened by an occasional inappropriate maintenance of the construction. A geologically-geotechnically characterization of escarps and slopes is crucial in order to prevent these problems. This work deals with a geological-geotechnical study of 1:10.000 scale mapping in a stretch of a local road (CHQ-40) at the Serra de Itaqueri, Charqueada town, State of São Paulo. The stretch is known by several physical problems as erosion and mass movement. The methods of study were based on an integrative analysis of the diverse elements of the physical environment by using aerial photographs - to obtain the physiographic compartmentalization of terrain units - as well as field work - to accomplish the evaluation of the units by employing sketch lists. To achieve this, we selected several techniques in order to identify and classify different types of existing problems as erosion, landslide in embankments and fill slopes, rockfall, block rolling, among others. We also included the analysis of soil horizon, thickness and composition. The geological-geotechnical mapping resulted in six units: 1- Sandstones in cuesta’s backhill; 2 – Basalts in cuesta’s front; 3- Sandstones in cuesta’s front; 4 – Talus and colluvial deposits at cuesta’s foothill; 5- Sandstones of the Piramboia Formation in hillside; and 6 – Colluvial soil in the hill top. A characterization of the geological-geotechnical units is detailed, coupled to the cartographic material. Other cartographic products elaborated for this study included 1:10.000 maps of hypsometry, slope and curvature
Resumo:
The work depicts the study of geological and geotechnical characteristics presents, together with an analysis of the physical environment components and evaluation of its units, along a marginal stretch at Rodovia Amparo-Morungaba (SP-360) in order to present a geological and geotechnical map, 1:25.000 scale (one of the objectives of the work). There was also a geotechnical assessment of the present geological processes and the development of corrective measures necessary to establish safe conditions for road traffic. The method for the characterization of geological and geotechnical analysis was integrated the physical components associated with photo interpretation (another objective of this work) based on Google Earth´s air images along the referred highway. In addition, field studies were made that helped in the distribution and compartmentalization of the six geological and geotechnical units and profiles of each specific alteration were also made. The finals results present the above mentioned map, a detailed description of each of the six units and a a geotechnical assessment of the present geological processes and the development of corrective measures necessary to establish safe conditions for road traffic. Also, had success at photo interpretation based on Google Earth´s air images, obtaining stereoscopy
Resumo:
The research addresses the need for detailed geological and geotechnical investigations in pipeline’s design, given the diversity of geological units crossed by these works along its layout, which often extends for hundreds of miles. For its large size, this type of work often goes through different states and regions with very different characteristics in terms of topography, vegetation, geology and geotechnical conditions. For a better use of these investigations in order to avoid unnecessary costs and inefficient results, some authors recommend that steps be taken to study, seeking a progressive detail of the pipeline’s implantation area. The main objective of the study is to describe, analyze and correlate the proposals for geological and geotechnical’s investigation recommended by the authors selected. Nogueira Junior & Marques (1998) suggest that for better effectiveness of geological and geotechnical investigations associated with the deployment of pipelines, different research methods are applied sequentially in five major stages of the building. Rocha et al (2008) recommend that, for the pipeline’s implantation using horizontal directional drilling, investigations are performed in three phases of study, to be developed in coordination with the project stages. For Gelinas & Mathy (2004), when time and budget constraints permit, geotechnical investigations for directional drilling projects for pipelines must be made in four sequential phases. Heinz (2008) suggests that the geotechnical investigations for pipeline’s implantation using horizontal directional drilling at crossings of water bodies are carried out in three successive stages. By the development of research, we could see that all the different proposals recommend studies in sequential phases, starting from a more general scale for a more specific, seeking a progressive understanding of the geological model of the area where you intend to deploy the pipeline
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE