262 resultados para Elliptic orbits
Resumo:
This work generates, through a sample of numerical simulations of the restricted three-body problem, diagrams of semimajor axis and eccentricity which defines stable and unstable zones for particles in S-type orbits around Pluto and Charon. Since we consider initial conditions with 0 <= e <= 0.99, we found several new stable regions. We also identified the nature of each one of these newly found stable regions. They are all associated to families of periodic orbits derived from the planar circular restricted three-body problem. We have shown that a possible eccentricity of the Pluto-Charon system slightly reduces, but does not destroy, any of the stable regions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In this work we study the basic aspects concerning the stability of the outer satellites of Jupiter. Including the effects of the four giant planets and the Sun we study a large grid of initial conditions. Some important regions where satellites cannot survive are found. Basically these regions are due to Kozai and other resonances. We give an analytical explanation for the libration of the pericenters (ω) over bar - (ω) over bar (J). Another different center is also found. The period and amplitude of these librations are quite sensitive to initial conditions, so that precise observational data are needed for Pasiphae and Sinope. The effect of Jupiter's mass variation is briefly presented. This effect can be responsible for satellite capture and also for locking (ω) over bar - (ω) over bar (J) in temporary libration.
Resumo:
Let alpha be a C(infinity) curve in a homogeneous space G/H. For each point x on the curve, we consider the subspace S(k)(alpha) of the Lie algebra G of G consisting of the vectors generating a one parameter subgroup whose orbit through x has contact of order k with alpha. In this paper, we give various important properties of the sequence of subspaces G superset of S(1)(alpha) superset of S(2)(alpha) superset of S(3)(alpha) superset of ... In particular, we give a stabilization property for certain well-behaved curves. We also describe its relationship to the isotropy subgroup with respect to the contact element of order k associated with alpha.
Resumo:
The dynamics of the restricted three-body Earth-Moon-particle problem predicts the existence of direct periodic orbits around the Lagrangian equilibrium point L1. From these orbits, we derive a set of trajectories that form links between the Earth and the Moon and are capable of performing transfers between terrestrial and lunar orbits, in addition to defining an escape route from the Earth-Moon system. When we consider a more complex and realistic dynamical system - the four-body Sun-Earth-Moon-particle (probe) problem - the trajectories have an expressive gain of inclination when they penetrate in the lunar influence sphere, thus allowing the insertion of probes into low-altitude lunar orbits with high inclinations, including polar orbits. In this study, we present these links and investigate some possibilities for performing an Earth-Moon transfer based on these trajectories. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
In the present work we explore regions of distant direct stable orbits around the Moon. First, the location and size of apparently stable regions are searched for numerically, adopting the approach of temporary capture time presented in Vieira Neto & Winter (2001). The study is made in the framework of the planar, circular, restricted three-body problem, Earth-Moon-particle. Regions of the initial condition space whose trajectories are apparently stable are determined. The criterion adopted was that the trajectories do not escape from the Moon during an integration period of 10(4) days. Using Poincare surface of sections the reason for the existence of the two stable regions found is studied. The stability of such regions proved to be due to two families of simple periodic orbits, h1 and h2, and the associated quasi-periodic orbits that oscillate around them. The robustness of the stability of the larger region, h2, is tested with the inclusion of the solar perturbation. The size of the region decreases, but it is still significant in size and can be useful in spacecraft missions.
Resumo:
In a previous work, Vieira Neto & Winter (2001) numerically explored the capture times of particles as temporary satellites of Uranus. The study was made in the framework of the spatial, circular, restricted three-body problem. Regions of the initial condition space whose trajectories are apparently stable were determined. The criterion adopted was that the trajectories do not escape from the planet during an integration of 10(5) years. These regions occur for a wide range of orbital initial inclinations (i). In the present work it is studied the reason for the existence of such stable regions. The stability of the planar retrograde trajectories is due to a family of simple periodic orbits and the associated quasi-periodic orbits that oscillate around them. These planar stable orbits had already been studied (Henon 1970; Huang & Innanen 1983). Their results are reviewed using Poincare surface of sections. The stable non-planar retrograde trajectories, 110 degrees less than or equal to i < 180
Resumo:
In the present work we consider a dynamical system of mum size particles around the Earth subject to the effects of radiation pressure. Our main goal is to study the evolution of its relative velocity with respect to the co-planar circular orbits that it crosses. The particles were initially in a circular geostationary orbit, and the particles size were in the range between 1 and 100 mum. The radiation pressure produces variations in its eccentricity, resulting in a change in its orbital velocity. The results indicated the maximum linear momentum and kinetic energy increases as the particle size increases. For a particle of 1 mum the kinetic energy is approximately 1.56 x 10(-7) J and the momentum is 6.27 x 10(-11) kg m/s and for 100 mum the energy is approximately 1.82 x 10(-4) J and the momentum is 2.14 x 10(-6) kg m/s. (C) 2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
For a class of reversible quadratic vector fields on R-3 we study the periodic orbits that bifurcate from a heteroclinic loop having two singular points at infinity connected by an invariant straight line in the finite part and another straight line at infinity in the local chart U-2. More specifically, we prove that for all n is an element of N, there exists epsilon(n) > 0 such that the reversible quadratic polynomial differential systemx = a(0) + a(1y) + a(3y)(2) + a(4Y)(2) + epsilon(a(2x)(2) + a(3xz)),y = b(1z) + b(3yz) + epsilon b(2xy),z = c(1y) +c(4az)(2) + epsilon c(2xz)in R-3, with a(0) < 0, b(1)c(1) < 0, a(2) < 0, b(2) < a(2), a(4) > 0, c(2) < a(2) and b(3) is not an element of (c(4), 4c(4)), for epsilon is an element of (0, epsilon(n)) has at least n periodic orbits near the heteroclinic loop. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this paper, numerical simulations are made, using the three-dimensional restricted three-body problem as the mathematical model, to calculate the effects of a swing-by with the planet Saturn in the orbit of a comet. To show the results, the orbit of the comet is classified in four groups: elliptic direct, elliptic retrograde, hyperbolic direct and hyperbolic retrograde. Then, the modification in the orbit of the comet due to the close approach is shown in plots that specify from which group the comet's orbit is coming and to which group it is going. Several families of orbits are found and shown in detail. An analysis about the trends as parameters (position and velocity at the periapse) vary is performed and the influence of each of them is shown and explained. The result is a collection of maps that describe the evolution of the trajectory of the comet due to the close approach. Those maps can be used to estimate the probability of some events, like the capture or escape of a comet. An example of this technique is shown in the paper. (C) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Several methods have been proposed for calculations of the eccentricity function for a high value of the eccentricity, however they cannot be used when the high degree and order coefficients of gravity fields are taken into account. The method proposed by Wnuk(1) is numerically stable in this case, but when is used. a large number of terms occurs in formulas for geopotential perturbations. In this paper we propose an application of expansions of some functions of the eccentric anomaly E as well as Hansen coefficients in power series of (e - e*), where e* is a fixed value of the eccentricity derived by da Silva Fernandes(2,3,4). These series are convergent for all e < 1.
Resumo:
In the present work we analyse the behaviour of a particle under the gravitational influence of two massive bodies and a particular dissipative force. The circular restricted three body problem, which describes the motion of this particle, has five equilibrium points in the frame which rotates with the same angular velocity as the massive bodies: two equilateral stable points (L-4, L-5) and three colinear unstable points (L-1, L-2, L-3). A particular solution for this problem is a stable orbital libration, called a tadpole orbit, around the equilateral points. The inclusion of a particular dissipative force can alter this configuration. We investigated the orbital behaviour of a particle initially located near L4 or L5 under the perturbation of a satellite and the Poynting-Robertson drag. This is an example of breakdown of quasi-periodic motion about an elliptic point of an area-preserving map under the action of dissipation. Our results show that the effect of this dissipative force is more pronounced when the mass of the satellite and/or the size of the particle decrease, leading to chaotic, although confined, orbits. From the maximum Lyapunov Characteristic Exponent a final value of gamma was computed after a time span of 10(6) orbital periods of the satellite. This result enables us to obtain a critical value of log y beyond which the orbit of the particle will be unstable, leaving the tadpole behaviour. For particles initially located near L4, the critical value of log gamma is -4.07 and for those particles located near L-5 the critical value of log gamma is -3.96. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this paper, we have investigated a region of direct stable orbits around the Moon, whose stability is related to the H2 Family of periodic orbits and to the quasi-periodic orbits that oscillate around them. The stability criteria adopted was that the path did not escape from the Moon during an integration period of 1000 days (remaining with negative two-body Moon-probe orbital energy during this period). Considering the three-dimensional four-body Sun-Earth-Moon-probe problem, we investigated the evolution of the size of the stability region, taking into account the eccentricity of the Earth's orbit, the eccentricity and inclination of the Moon's orbit, and the solar radiation pressure on the probe. We also investigated the evolution of the region's size and its location by varying the inclination of the probe's initial osculating orbit relative to the Moon's orbital plane between 0 degrees and 180 degrees. The size of the stability region diminishes; nevertheless, it remains significant for 0 <= i <= 25 degrees and 35 degrees <= i <= 45 degrees. The orbits of this region could be useful for missions by space vehicles that must remain in orbit around the Moon for periods of up to 1000 days, requiring low maintenance costs. (c) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.