28 resultados para Elásticos intermaxilares
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Odontologia - FOA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Em geral, estruturas espaciais e manipuladores robóticos leves têm uma característica similar e inerente que é a flexibilidade. Esta característica torna a dinâmica do sistema muito mais complexa e com maiores dificuldades para a análise de estabilidade e controle. Então, braços robóticos bastantes leves, com velocidade elevada e potencia limitada devem considerar o controle de vibração causada pela flexibilidade. Por este motivo, uma estratégia de controle é desejada não somente para o controle do modo rígido mas também que seja capaz de controlar os modos de vibração do braço robótico flexível. Também, redes neurais artificiais (RNA) são identificadas como uma subespecialidade de inteligência artificial. Constituem atualmente uma teoria para o estudo de fenômenos complexos e representam uma nova ferramenta na tecnologia de processamento de informação, por possuírem características como processamento paralelo, capacidade de aprendizagem, mapeamento não-linear e capacidade de generalização. Assim, neste estudo utilizam-se RNA na identificação e controle do braço robótico com elos flexíveis. Esta tese apresenta a modelagem dinâmica de braços robóticos com elos flexíveis, 1D no plano horizontal e 2D no plano vertical com ação da gravidade, respectivamente. Modelos dinâmicos reduzidos são obtidos pelo formalismo de Newton-Euler, e utiliza-se o método dos elementos finitos (MEF) na discretização dos deslocamentos elásticos baseado na teoria elementar da viga. Além disso, duas estratégias de controle têm sido desenvolvidas com a finalidade de eliminar as vibrações devido à flexibilidade do braço robótico com elos flexíveis. Primeiro, utilizase um controlador neural feedforward (NFF) na obtenção da dinâmica inversa do braço robótico flexível e o calculo do torque da junta. E segundo, para obter precisão no posicionamento... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
In our experiments, we studied the classical dynamic of a particle in vertical motion subject to a constant gravitational field and the partial shock with an elastic wall with oscillatory motion located below the particle. The motion of the particle was confined to the vertical direction by a glass guide tube, which was initially evacuated, allowing viscous drag forces to be disregarded. The time between impacts, as well as the time between the reference phase of the movement of the base and the moment of impact and the period of oscillation of the base will be acquired by a hardware and software to obtain the phases space to be compared later with the description of the system through mapping discrete variables via the 'particle velocity immediately after shock 'and' phase of the movement of the base at the instant of shock 'obtained by computer simulation. This requires developing an electronic analog system followed by Digital implemented in reconfigurable logic, more specifically a sequential machine able to discriminate the impact with the metal base from the impacts of the glass guide tube, based on the frequency spectrum of the response of the microphone to these different impacts
Resumo:
In the treatment plans in conventional Proton therapy are considered only the elastic interactions of protons with electrons and/or nuclei, it means, mainly ionization and coulomb excitation processes. As the energy needed to reach the deep tumors should be of several hundred of MeVs, certainly the nuclear inelastic channels are open. Only some previous studies of the contribution of these processes in the full dose have been made towards targets composed of water. In this study will be presented the results of the simulation of the processes of interaction of beams of protons in the range of 100-200 MeV of energy with a cylindrical phantom composed by striated muscle (ICRU), emphasizing in the contribution to total dose due to the deposition of energy by secondary particles alpha (α), deuterium (2H), tritium (3H), neutron (n) and hélio3 (3He), originated by nuclear inelastic processes. The simulations were performed by using the method of Monte Carlo, via the computer code MCNPX v2.50 (Monte Carlo N-Particle eXtended). The results will be shown demonstrated through the graphics of the deposited dose with or without nuclear interaction, the percentual of dose deposited by secondary particles, the radial dispersion of neutrons, as well as the multiplicity of secondary particles
Resumo:
This work presents experimental results of some physical properties of antimony phosphate glasses with compositions (x) Sb2O3 - (1-x) P2O5 (x = 0.75, 0.85, 0.90). Mechanical, thermal, optical and electrical properties were investigated: density, elastic moduli (Young's moduli and Poisson's ratio), Vickers microhardness, coefficient of thermal expansion, glass transition temperature, refractive index and electrical conductivity (for x = 0.75). There was no evidence of electronic conductivity by bipolaron hopping. Measurements of energy dispersive spectroscopy (EDS) showed that volatilization of Sb2O3 takes place during the glass melting
Resumo:
Cosmic radiation has been identi ed as one of the main hazard to crew, aircraft and sensitive equipments involved in long-term missions and even high-altitude commercial ights. Generally, shields are used in spatial units to avoid excessive exposure, by holding the incident radiation. Unfortunatelly, shielding in space is problematic, especially when high-energy cosmic particles are considered, due to the production of large number of secondary particles, mainly neutrons, protons and alpha particles, caused by spallation reactions and quasi-elastic processes of the corpuscular radiation with the shield. Good parameters for checking the secondary particle production at target material are diferential cross section and energy deposited in the shield. Addition experiments, some computer codes based on Monte Carlo method show themselves a suitable tool to calculate shield parameters, due to have evaluated nuclear data libraries implemented on the algorithm. In view of this, the aim of this work is determining the parameters evaluated in shielding materials, by using MCNPX code, who shows good agreement with experimental data from literature. Among the materials, Aluminium had lower emission and production of secondary particles
Resumo:
Pós-graduação em Fisioterapia - FCT
Resumo:
A metal coping may undergo changes during porcelain firing, which compromises its marginal adaptation. The use of NiCrTi alloy proposes to minimize this effect through the high melting point of titanium present in its composition. This study evaluated the influence of porcelain firing cycle on the marginal adaptation of NiCrTi copings in different preparation designs. Forty standardized metal dies were fabricated with the following combinations finish line/convergence of the axial walls: 1) shoulder/6°; 2) shoulder/20°; 3) sloping shoulder/6°; 4) sloping shoulder/20°. On each die a metal ceramic restoration coping was made. The die/coping set was stabilized with orthodontic elastics, divided into four equidistant areas with three measurement points each and a cementation pressure was simulated. The measurements were taken under a stereomicroscope (32×). After the first measurement, the copings were submitted to sintering cycles simulating porcelain application. For repeated measurements, the same procedures described above were performed. Data were submitted to Student’s-t test, 1-way ANOVA and Tukey´s test (α = 0.05). Adaptation means (µm) before and after porcelain firing in different preparations were: 1) 111.92 and 127.31; 2) 124.15 and 135.48; 3) 122.19 and 138.77; 4) 166.09 and 186.72; respectively. The porcelain firing impaired adaptation, regardless of the preparation design. The preparation in a 20° sloping shoulder provided a worse adaptation when compared with preparations that had 6° and 20° shoulder, which were statistically equal. The 6° sloping shoulder was statistically equal to the other three preparation designs.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
In many oral rehabilitation professionals seeking venture renew people smile. However, these procedures have functional implications and aesthetic criteria which must be satisfied so that the final result is predictable. The restoration of relations intermaxillary, phonetics, masticatory function, esthetics and patient comfort are the goals to be achieved. An effective way to achieve these goals when immediate reconstruction with permanent dentures is not possible, make use of a type of partial denture called overlay. Bruxism is a manifestation of biopsychological imbalance that affects the stomatognathic system, characterized by clenching and / or attrition of teeth together so centric or eccentric, can be manifestation of nocturnal or diurnal. Its effects can manifest themselves in different parts of the stomatognathic system, varying the severity of the damage as the resistance of the structures affected, the time of existence, its regularity and the general state of the wearer. The description of the steps followed in solving this case, in which the patient edentulous mandibular arch while the maxillary arch showed absence of teeth 16 and 26 and, except for the teeth 17 and 27, all other teeth showed wear very sharp in the sense denoting incisal cervical, severe impairment of the vertical dimension, the quality of masticatory function and a marked impairment phonetic, this case report aims to guide the beginning of a rehabilitation, as well as the transitional phase of treatment for recovery of functional and aesthetic relationships intermaxillary .
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)