33 resultados para Ecology Evolution and Organismal Biology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated reproductive activity, courtship behavior, call structure, body size, clutch size, oviposition site, and reproductive mode of Hyla sp. (aff. ehrhardti). Males called in all months, but showed a peak of activity during the rainy season. Three pair formations were observed and courtship involved stereotyped behavioral sequences, including visual signaling. Males emitted three different vocalization types: advertisement calls, courtship calls, and a vocalization of unknown function. Females attained larger body sizes than males and deposited an average of 74.5 unpigmented eggs per clutch. Early larval stages are aquatic but restricted to water in constructed subterranean nests; subsequent to flooding of nests, exotrophic tadpoles live in ponds or streams. Courtship behavior in Hyla sp. (aff. ehrhardti) is complex and the diverse repertoire of limb movements, exhibited by males, probably provide visual stimuli to females in this nocturnal treefrog. Hyla sp. (aff. ehrhardti) belongs to the H. albomarginata group. Considering the reproductive modes in this group, the complexes of H. albosignata and of H. albofrenata can be considered more close related to each other than to the H. albomarginata complex. © Koninklijke Brill NV, Leiden, 2004.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A century after the discovery of Chagas disease, it is still one of the most important parasitic diseases affecting humans. The subfamily Triatominae is important in medical health, because these insects are vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease. These insects are also of important cytological relevance because they have particular cell characteristics, such as persistence of nucleolar material in spermatogenesis. The germ cells of the animal kingdom have chromatoid bodies (CBs) in their cytoplasm that can originate from nucleolar material that is fragmented in the early stages of spermatogenesis and plays an important role in cellular communication between the spermatids during spermiogenesis. Currently, there are few studies on the function and formation of the CB in nucleologenesis, especially with emphasis on the ultrastructure of the cells involved in spermatogenesis of insects. Considering the importance of knowledge about the triatomine fauna, we conducted a study of the biogeography and reports of these insects and a survey of patients with Chagas disease in the northwestern region of São Paulo State. Data collected from 1995 to 2009 indicated 700 individuals with Chagas disease, demonstrating a range of 0 to 40 years, which shows that the disease may be active in this region. Moreover, of the 1150 patients treated for cardiomyopathy, 44% were chagasic. Regarding the triatomines noted and captured in the period from 2004 to 2009, the species were Triatoma sordida and Rhodnius neglectus, with T. sordida being the most abundant. In addition, some triatomines were infected by T. cruzi in various developmental stages. We also analyzed the nucleolar cycle and fibrillarin nucleolar protein expression in CB of spermatogenic cells of T. infestans and T. sordida, using histological, ultrastructural and immunocytochemical techniques. The results revealed fibrillarin nucleolar protein expression in the nucleus and in some cytoplasmic spots of germ cells during spermatogenesis in triatomines. These data suggest that fibrillarin could be a constituent of CB, which was most likely derived from nucleolar fragmentation. This is the first time that fibrillarin protein expression has been shown in CB during spermatogenesis progression in triatomines. Knowledge about the biology of triatomines was deepened in this study and, in particular, the structural and ultrastructural aspects of spermatogenesis in triatomines. This study showed that the disease may be active in the northwestern region of São Paulo and expanded our knowledge of the biology of triatomines, the main vectors of Chagas disease. © FUNPEC-RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The PRP8 intein is the most widespread intein among the Kingdom Fungi. This genetic element occurs within the prp8 gene, and is transcribed and translated simultaneously with the gene. After translation, the intein excises itself from the Prp8 protein by an autocatalytic splicing reaction, subsequently joining the N and C terminals of the host protein, which retains its functional conformation. Besides the splicing domain, some PRP8 inteins also have a homing endonuclease (HE) domain which, if functional, makes the intein a mobile element capable of becoming fixed in a population. This work aimed to study (1) The occurrence of this intein in Histoplasma capsulatum isolates (n=. 99) belonging to different cryptic species collected in diverse geographical locations, and (2) The functionality of the endonuclease domains of H. capsulatum PRP8 inteins and their phylogenetic relationship among the cryptic species. Our results suggest that the PRP8 intein is fixed in H. capsulatum populations and that an admixture or a probable ancestral polymorphism of the PRP8 intein sequences is responsible for the apparent paraphyletic pattern of the LAmA clade which, in the intein phylogeny, also encompasses sequences from LAmB isolates. The PRP8 intein sequences clearly separate the different cryptic species, and may serve as an additional molecular typing tool, as previously proposed for other fungi genus, such as Cryptococcus and Paracoccidioides. © 2013 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Telomeres are the physical ends of eukaryotic linear chromosomes. Telomeres form special structures that cap chromosome ends to prevent degradation by nucleolytic attack and to distinguish chromosome termini from DNA double-strand breaks. With few exceptions, telomeres are composed primarily of repetitive DNA associated with proteins that interact specifically with double- or single-stranded telomeric DNA or with each other, forming highly ordered and dynamic complexes involved in telomere maintenance and length regulation. In proliferative cells and unicellular organisms, telomeric DNA is replicated by the actions of telomerase, a specialized reverse transcriptase. In the absence of telomerase, some cells employ a recombination-based DNA replication pathway known as alternative lengthening of telomeres. However, mammalian somatic cells that naturally lack telomerase activity show telomere shortening with increasing age leading to cell cycle arrest and senescence. In another way, mutations or deletions of telomerase components can lead to inherited genetic disorders, and the depletion of telomeric proteins can elicit the action of distinct kinases-dependent DNA damage response, culminating in chromosomal abnormalities that are incompatible with life. In addition to the intricate network formed by the interrelationships among telomeric proteins, long noncoding RNAs that arise from subtelomeric regions, named telomeric repeat-containing RNA, are also implicated in telomerase regulation and telomere maintenance. The goal for the next years is to increase our knowledge about the mechanisms that regulate telomere homeostasis and the means by which their absence or defect can elicit telomere dysfunction, which generally results in gross genomic instability and genetic diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mortality factors that act sequentially through the demographic transitions from seed to sapling may have critical effects on recruitment success. Understanding how habitat heterogeneity influences the causal factors that limit propagule establishment in natural populations is central to assess these demographic bottlenecks and their consequences. Bamboos often influence forest structure and dynamics and are a major factor in generating landscape complexity and habitat heterogeneity in tropical forests. To understand how patch heterogeneity influences plant recruitment we studied critical establishment stages during early recruitment of Euterpe edulis, Sloanea guianensis and Virola bicuhyba in bamboo and non-bamboo stands in the Brazilian Atlantic forest. We combined observational studies of seed rain and seedling emergence with seed addition experiments to evaluate the transition probabilities among regeneration stages within bamboo and non-bamboo stands. The relative importance of each mortality factor was evaluated by determining how the loss of propagules affected stage-specific recruitment success. Our results revealed that the seed addition treatment significantly increased seedling survivorship for all three species. E. edulis seedling survival probability increased in the addition treatment in the two stand types. However, for S. guianensis and V. bicuhyba this effect depended strongly on artificially protecting the seeds, as both species experienced increased seed and seedling losses due to post-dispersal seed predators and herbivores. Propagules of all three species had a greater probability of reaching subsequent recruitment stages when protected. The recruitment of large-seeded V. bicuhyba and E. edulis appears to be much more limited by post-dispersal factors than by dispersal limitation, whereas the small-seeded S. guianensis showed an even stronger effect of post-dispersal factors causing recruitment collapse in some situations. We demonstrated that E. edulis, S. guianensis and V. bicuhyba are especially susceptible to predation during early compared with later establishment stages and this early stage mortality can be more crucial than stand differences as determinants of successful regeneration. Among-species differences in the relative importance of dispersal vs. establishment limitation are mediated by variability in species responses to patch heterogeneity. Thus, bamboo effects on the early recruitment of non-bamboo species are patchy and species-specific, with successional bamboo patches exerting a far-reaching influence on the heterogeneity of plant species composition and abundance. © 2012 Perspectives in Plant Ecology, Evolution and Systematics.