58 resultados para EXPLOITING MULTICOMMUTATION
Resumo:
We present a measurement of the fraction of inclusive W +jets events produced with net charm quantum number 11, denoted W + c-jet, in p collisions at root s = 1.96 TeV using approximately 1 fb(-1) of data collected by the do detector at the Fermilab Tevatron Collider. We identify the W +jets events via the leptonic W boson decays. Candidate W + c-jet events are selected by requiring a jet containing a muon in association with a reconstructed W boson and exploiting the charge correlation between this muon and W boson decay lepton to perform a nearly model-independent background subtraction. We measure the fraction of W + c-jet events in the inclusive W +jets sample for jet PT > 20 GeV and pseudorapidity |eta| < 2.5 to be 0.074 +/- 0.019(stat.) +/-(0.012)(0.014) (syst.), in agreement with theoretical predictions. The probability that background fluctuations could produce the observed fraction of W + c-jet events is estimated to be 2.5 x 10(-4), which corresponds to a 3.5 sigma statistical significance. Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A flow-injection (FI) spectrophotometric procedure exploiting merging zones is proposed for the determination of azithromycin in pharmaceutical formulations. The method is based on the reaction of azithromycin with tetrachloro-phenzoquinone (p-chloranil) accelerated by hydrogen peroxide and conducted in a methanol medium, producing a purple-red color compound (lambda(max) = 540 nm). The FI system and the experimental conditions were optimized using a multivariate method. Beer's law is obeyed in a concentration range of 50 - 1600 mu g mL(-1) with an excellent correlation coefficient (r = 0.9998). The detection limit and the quantification limit were 6.6 and 22.1 mu g mL(-1), respectively. No interference was observed from the common excipients, and the recoveries were within 98.6 to 100.4%. The procedure was applied to the determination of azithromycin in pharmaceuticals with a high sampling rate (65 samples h(-1)). The results obtained by the proposed method were in good agreement with those obtained by the comparative method at 95% confidence level.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We extend the use of Bell inequalities to Φ → K0K̄0 decays by exploiting analogies and differences to the well-known and experimentally verified singlet-spin case. Contrasting with other analyses, our Bell inequalities are violated by quantum mechanics and can strictly be derived from local realistic theories. In principle, quantum mechanics could then be tested using unstable, oscillating states governed by a CP-violating Hamiltonian. © 1999 The American Physical Society.
Resumo:
A new strategy for minimization of Cu2+ and Pb2+ interferences on the spectrophotometric determination of Cd2+ by the Malachite green (MG)-iodide reaction using electrolytic deposition of interfering species and solid phase extraction of Cd2+ in flow system is proposed. The electrolytic cell comprises two coiled Pt electrodes concentrically assembled. When the sample solution is electrolyzed in a mixed solution containing 5% (v/v) HNO3, 0.1% (v/v) H2SO4 and 0.5 M NaCl, Cu2+ is deposited as Cu on the cathode, Pb2+ is deposited as PbO2 on the anode while Cd2+ is kept in solution. After electrolysis, the remaining solution passes through an AG1-X8 resin (chloride form) packed minicolumn in which Cd2+ is extracted as CdCl4/2-. Electrolyte compositions, flow rates, timing, applied current, and electrolysis time was investigated. With 60 s electrolysis time, 0.25 A applied current, Pb2+ and Cu2+ levels up to 50 and 250 mg 1-1, respectively, can be tolerated without interference. For 90 s resin loading time, a linear relationship between absorbance and analyte concentration in the 5.00-50.0 μg Cd 1-1 range (r2 = 0.9996) is obtained. A throughput of 20 samples per h is achieved, corresponding to about 0.7 mg MG and 500 mg KI and 5 ml sample consumed per determination. The detection limit is 0.23 μg Cd 1-1. The accuracy was checked for cadmium determination in standard reference materials, vegetables and tap water. Results were in agreement with certified values of standard reference materials and with those obtained by graphite furnace atomic absorption spectrometry at 95% confidence level. The R.S.D. for plant digests and water containing 13.0 μg Cd 1-1 was 3.85% (n = 12). The recoveries of analyte spikes added to the water and vegetable samples ranged from 94 to 104%. (C) 2000 Elsevier Science B.V.
Resumo:
Reliability of power supply is related, among other factors, to the control and protection devices allocation in feeders of distribution systems. In this way, optimized allocation of sectionalizing switches and protection devices in strategic points of distribution circuits, improves the quality of power supply and the system reliability indices. In this work, it is presented a mixed integer non-linear programming (MINLP) model, with real and binary variables, for the sectionalizing switches and protection devices allocation problem, in strategic sectors, aimed at improving reliability indices, increasing the utilities billing and fulfilling exigencies of regulatory agencies for the power supply. Optimized allocation of protection devices and switches for restoration, allows that those faulted sectors of the system can be isolated and repaired, re-managing loads of the analyzed feeder into the set of neighbor feeders. Proposed solution technique is a Genetic Algorithm (GA) developed exploiting the physical characteristics of the problem. Results obtained through simulations for a real-life circuit, are presented. © 2004 IEEE.
Resumo:
In this article we study the general structure and special properties of the Schwinger-Dyson equation for the gluon propagator constructed with the pinch technique, together with the question of how to obtain infrared finite solutions, associated with the generation of an effective gluon mass. Exploiting the known all-order correspondence between the pinch technique and the background field method, we demonstrate that, contrary to the standard formulation, the non-perturbative gluon self-energy is transverse order-by-order in the dressed loop expansion, and separately for gluonic and ghost contributions. We next present a comprehensive review of several subtle issues relevant to the search of infrared finite solutions, paying particular attention to the role of the seagull graph in enforcing transversality, the necessity of introducing massless poles in the three-gluon vertex, and the incorporation of the correct renormalization group properties. In addition, we present a method for regulating the seagull-type contributions based on dimensional regularization; its applicability depends crucially on the asymptotic behavior of the solutions in the deep ultraviolet, and in particular on the anomalous dimension of the dynamically generated gluon mass. A linearized version of the truncated Schwinger-Dyson equation is derived, using a vertex that satisfies the required Ward identity and contains massless poles belonging to different Lorentz structures. The resulting integral equation is then solved numerically, the infrared and ultraviolet properties of the obtained solutions are examined in detail, and the allowed range for the effective gluon mass is determined. Various open questions and possible connections with different approaches in the literature are discussed. © SISSA 2006.
Resumo:
Microwaves have been used in organic synthesis, since 1986, and have proved advantageous in several respects: the possibility of higher yields, greater selectivity and less thermal decomposition. Phthalimide and its derivatives constitute an important class of compounds for use in synthetic organic chemistry; in medicinal chemistry, it is considered an important biophore, acting as a pharmacophoric structural subunit for the synthesis of a number of compounds with different pharmacological uses, such as against sickle-cell disease. The purpose of the work reported here was to develop an alternative method for the synthesis of phthalimide derivatives by exploiting the condensation of phthalic anhydride with amino groups under microwave radiation. The results showed that phthalimide derivatives were obtained in shorter reaction times (5-10 min) and higher yields (60-89%) than by with conventional heating (reflux), demonstrating the potential use of microwaves in the synthesis of this class of molecules.
Resumo:
A simple, rapid, and automated assay for hydrogen peroxide in pharmaceutical samples was developed by combining the multicommutation system with a chemiluminescence (CL) detector. The detection was performed using a spiral flow-cell reactor made from polyethylene tubing that was positioned in front of a photodiode. It allows the rapid mixing of CL reagent and analyte and simultaneous detection of the emitted light. The chemiluminescence was based on the reaction of luminol with hydrogen peroxide catalyzed by hexacyanoferrate(III). The feasibility of the flow system was ascertained by analyzing a set of pharmaceutical samples. A linear response within the range of 2.2-210 μmol l-1 H2O2 with a LD of 1.8 μmol l-1 H2O2 and coefficient of variations smaller than 0.8% for 1.0×10-5 mol l-1 and 6.8×10-5 mol l-1 hydrogen peroxide solutions (n=10) were obtained. Reagents consumption of 90 μg of luminol and 0.7 mg of hexacyanoferrate(III) per determination and sampling rate of 200 samples per hour were also achieved. Copyright © Taylor & Francis Group, LLC.
Resumo:
This paper presents a new approach for damage detection in structural health monitoring systems exploiting the coherence function between the signals from PZT (Lead Zirconate Titanate) transducers bonded to a host structure. The physical configuration of this new approach is similar to the configuration used in Lamb wave based methods, but the analysis and operation are different. A PZT excited by a signal with a wide frequency range acts as an actuator and others PZTs are used as sensors to receive the signal. The coherences between the signals from the PZT sensors are obtained and the standard deviation for each coherence function is computed. It is demonstrated through experimental results that the standard deviation of the coherence between the signals from the PZTs in healthy and damaged conditions is a very sensitive metric index to detect damage. Tests were carried out on an aluminum plate and the results show that the proposed methodology could be an excellent approach for structural health monitoring (SHM) applications.
Resumo:
This paper proposes a methodology to consider the effects of the integration of DG on planning. Since DG has potential to defer investments in networks, the impact of DG on grid capacity is evaluated. A multi-objective optimization tool based on the meta-heuristic MEPSO is used, supporting an alternative approach to exploiting the Pareto front features. Tests were performed in distinct conditions with two well-known distribution networks: IEEE-34 and IEEE-123. The results combined minimization and maximization in order to produce different Pareto fronts and determine the extent of the impact caused by DG. The analysis provides useful information, such as the identification of futures that should be considered in planning. A future means a set of realizations of all uncertainties. MEPSO also presented a satisfactory performance in obtaining the Pareto fronts. © 2011 IEEE.