37 resultados para Depth contours
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O trabalho teve por objetivo avaliar a demanda energética de uma semeadora-adubadora, em função do tipo e manejo da cultura de cobertura vegetal e da profundidade da haste de deposição de adubo. Foi utilizado um trator Valtra BM100, instrumentado, para tracionar uma semeadora-adubadora de precisão equipada com quatro fileiras de semeadura espaçadas de 0,9 m para cultura de milho. O experimento foi conduzido em parcelas subsubdivididas, na área experimental do Laboratório de Máquinas e Mecanização Agrícola (LAMMA) da UNESP-Jaboticabal, utilizando duas culturas de cobertura (mucuna-preta e crotalária), três manejos dessas coberturas, sendo dois mecânicos (triturador de palhas e rolo-faca) e um químico (pulverização com herbicida), realizados 120 dias após a semeadura das culturas de cobertura e três profundidades da haste de deposição do adubo (0,11; 0,14 e 0,17 m), perfazendo 18 tratamentos, com quatro repetições, totalizando 72 observações. Foram avaliados os parâmetros velocidade de deslocamento, patinagem, força na barra de tração, força de pico, potência na barra de tração, potência de pico e consumo de combustível. Pôde-se concluir que a força na barra de tração foi menor para as profundidades de 0,11 e 0,14 m da haste sulcadora de adubo, o mesmo ocorrendo para força de pico, potência na barra de tração e consumo volumétrico. O consumo específico foi menor na profundidade de 0,17 m da haste sulcadora de adubo. As culturas de cobertura e seus manejos não interferiram no desempenho das máquinas estudadas.
Resumo:
Objectives: To compare simulated periodontal bone defect depth measured in digital radiographs with dedicated and non-dedicated software systems and to compare the depth measurements from each program with the measurements in dry mandibles.Methods: Forty periodontal bone defects were created at the proximal area of the first premolar in dry pig mandibles. Measurements of the defects were performed with a periodontal probe in the dry mandible. Periapical digital radiographs of the defects were recorded using the Schick sensor in a standardized exposure setting. All images were read using a Schick dedicated software system (CDR DICOM for Windows v.3.5), and three commonly available non-dedicated software systems (Vix Win 2000 v.1.2; Adobe Photoshop 7.0 and Image Tool 3.0). The defects were measured three times in each image and a consensus was reached among three examiners using the four software systems. The difference between the radiographic measurements was analysed using analysis of variance (ANOVA) and by comparing the measurements from each software system with the dry mandibles measurements using Student's t-test.Results: the mean values of the bone defects measured in the radiographs were 5.07 rum, 5.06 rum, 5.01 mm and 5.11 mm for CDR Digital Image and Communication in Medicine (DICOM) for Windows, Vix Win, Adobe Photoshop, and Image Tool, respectively, and 6.67 mm for the dry mandible. The means of the measurements performed in the four software systems were not significantly different, ANOVA (P = 0.958). A significant underestimation of defect depth was obtained when we compared the mean depths from each software system with the dry mandible measurements (t-test; P congruent to 0.000).Conclusions: the periodontal bone defect measurements in dedicated and in three non-dedicated software systems were not significantly different, but they all underestimated the measurements when compared with the measurements obtained in the dry mandibles.
Resumo:
The purpose of this study was to evaluate the influence of intrapulpal pressure and dentin depth on bond strengths of an etch-and-rinse and a self-etching bonding agent to dentin in vitro and in vivo. Twenty-four pairs of premolars were randomly divided into four groups (n = 6) according to the dentin bonding agent, Single Bond and Clearfil SE Bond, and intrapulpal pressure, null or positive. Each tooth of the pair was further designated to be treated in vivo or in vitro. The intrapulpal pressure was controlled in vivo by the delivery of local anesthetics containing or not a vasoconstrictor, while in vitro, it was achieved by keeping the teeth under hydrostatic pressure. Class I cavities were prepared and the dentin bonding agents were applied followed by incremental resin restoration. For the teeth treated in vitro, the same restorative procedures were performed after a 6 month-storage period. Beams with I mm 2 cross-sectional area were prepared and, microtensile tested. Clearfil SE Bond was not influenced by any of the variables of the study, while bond strengths produced in vitro were significatly higher for Single Bond. Overall, lower bond strengths were produced in deep dentin, which reached statistical significance when Single Bond was applied under physiological or simulated intrapulpal pressure. In conclusion, in vitro bonding may overestimate the immediate adhesive performance of more technique-sensitive dentin bonding systems. The impact of intrapulpal pressure on bond strength seems to be more adhesive dependent than dentin morphological characteristics related to depth. (C) 2007 Wiley Periodicals, Inc.
Resumo:
The performance of 36 models (22 ocean color models and 14 biogeochemical ocean circulation models (BOGCMs)) that estimate depth-integrated marine net primary productivity (NPP) was assessed by comparing their output to in situ (14)C data at the Bermuda Atlantic Time series Study (BATS) and the Hawaii Ocean Time series (HOT) over nearly two decades. Specifically, skill was assessed based on the models' ability to estimate the observed mean, variability, and trends of NPP. At both sites, more than 90% of the models underestimated mean NPP, with the average bias of the BOGCMs being nearly twice that of the ocean color models. However, the difference in overall skill between the best BOGCM and the best ocean color model at each site was not significant. Between 1989 and 2007, in situ NPP at BATS and HOT increased by an average of nearly 2% per year and was positively correlated to the North Pacific Gyre Oscillation index. The majority of ocean color models produced in situ NPP trends that were closer to the observed trends when chlorophyll-alpha was derived from high-performance liquid chromatography (HPLC), rather than fluorometric or SeaWiFS data. However, this was a function of time such that average trend magnitude was more accurately estimated over longer time periods. Among BOGCMs, only two individual models successfully produced an increasing NPP trend (one model at each site). We caution against the use of models to assess multiannual changes in NPP over short time periods. Ocean color model estimates of NPP trends could improve if more high quality HPLC chlorophyll-alpha time series were available.
Resumo:
The University of British Columbia (UBC) began performing piezocone penetration tests (CPTU) with electrical resistivity measurements (RCPTU) in 1989. Since then, RCPTU research at UBC has focused on obtaining geo-environmental parameters such as fluid resistivity and soil engineering properties such as porosity and degree of saturation from measurements of bulk soil electrical resistivity using the empirical relationship proposed by Archie (1942). Within this framework, the paper illustrates and discusses important design and calibration issues for resistivity modules such as the use of isolated circuitry to achieve linear calibrations over large ranges of resistivity. The suitability of RCPTU measurements for determination of geo-environmental and geotechnical parameters are assessed using typical ranges of soil and groundwater properties and methods of isolating individual factors for study are discussed. Illustrative examples of RCPTU research efforts including the environmental characterization of mine tailings, delineation of saline water intrusions in fresh water aquifers and the quality control of geotechnical ground densification are presented throughout the text. It is shown that groundwater temperature and hence ion mobility is not significantly altered by frictional heat generated during piezocone penetration and that ratio-based approaches to monitoring soil porosity can be used to eliminate the requirement for extensive groundwater sampling programs. Lastly, it is shown that RCPTU measurements above the water table can only be made using resistivity modules that are stable over a large range of resistivities and that such measurements are the most difficult to interpret because of grain surface conduction effects and generally unknown fluid resistivities.
Resumo:
There are many methods used to estimate values in places no sampled for construction of contours maps. The aim of this study was to use the methods of interpolation kriging, inverse of the square of the distance and polynomial in the representation of the spatial variability of the pH of the soil in the organic and conventional management in the culture of the coffee plantation. For that, irregular meshes were built for soil sampling in the depth of 0-0,10 meters, totaling 40 points sampling in each area. For gauging of the interpolation methods they were solitary 10% of the total of points, for each area. Initially, the data were appraised through the classic statistics (descriptive and exploratory) and spatial analysis. The method inverse square of the distance and kriging has low error in estimating dados. The method of kriging presented low variation around the average in different managements.
Resumo:
Objectives: The aim of this study was to analyze the stress distribution on dentin/adhesive interface (d/a) through a 3-D finite element analysis (FEA) varying the number and diameter of the dentin tubules orifice according to dentin depth, keeping hybrid layer (HL) thickness and TAǴs length constant. Materials and Methods: 3 models were built through the SolidWorks software: SD - specimen simulating superficial dentin (41 x 41 x 82 μm), with a 3 μm thick HL, a 17 μm length Tag, and 8 tubules with a 0.9 μm diameter restored with composite resin. MD - similar to M1 with 12 tubules with a 1.2 μm diameter, simulating medium dentin. DD - similar to M1 with 16 tubules with a 2.5 μm diameter, simulating deep dentin. Other two models were built in order to keep the diameter constant in 2.5 μm: MS - similar to SD with 8 tubules; and MM - similar to MD with 12 tubules. The boundary condition was applied to the base surface of each specimen. Tensile load (0.03N) was performed on the composite resin top surface. Stress field (maximum principal stress in tension - σMAX) was performed using Ansys Wokbench 10.0. Results: The peak of σMAX (MPa) were similar between SD (110) and MD (106), and higher for DD (134). The stress distribution pathway was similar for all models, starting from peritubular dentin to adhesive layer, intertubular dentin and hybrid layer. The peak of σMAX (MPa) for those structures was, respectively: 134 (DD), 56.9 (SD), 45.5 (DD), and 36.7 (MD). Conclusions: The number of dentin tubules had no influence in the σMAX at the dentin/adhesive interface. Peritubular and intertubular dentin showed higher stress with the bigger dentin tubules orifice condition. The σMAX in the hybrid layer and adhesive layer were going down from superficial dentin to deeper dentin. In a failure scenario, the hybrid layer in contact with peritubular dentin and adhesive layer is the first region for breaking the adhesion. © 2011 Nova Science Publishers, Inc.
Resumo:
In this paper a photogrammetric method is proposed for refining 3D building roof contours extracted from airborne laser scanning data. It is assumed that laser-derived planar faces of roofs are potentially accurate, while laser-derived building roof contours are not well defined. First, polygons representing building roof contours are extracted from a high-resolution aerial image. In the sequence, straight-line segments delimitating each building roof polygon are projected onto the corresponding laser-derived roof planes by using a new line-based photogrammetric model. Finally, refined 3D building roof contours are reconstructed by connecting every pair of photogrammetrically- projected adjacent straight lines. The obtained results showed that the proposed approach worked properly, meaning that the integration of image data and laser scanning data allows better results to be obtained, when compared to the results generated by using only laser scanning data. © 2013 IEEE.
Resumo:
This paper proposes a method by simulated annealing for building roof contours identification from LiDAR-derived digital elevation model. Our method is based on the concept of first extracting aboveground objects and then identifying those objects that are building roof contours. First, to detect aboveground objects (buildings, trees, etc.), the digital elevation model is segmented through a recursive splitting technique followed by a region merging process. Vectorization and polygonization are used to obtain polyline representations of the detected aboveground objects. Second, building roof contours are identified from among the aboveground objects by optimizing a Markov-random-field-based energy function that embodies roof contour attributes and spatial constraints. The solution of this function is a polygon set corresponding to building roof contours and is found by using a minimization technique, like the Simulated Annealing algorithm. Experiments carried out with laser scanning digital elevation model showed that the methodology works properly, as it provides roof contour information with approximately 90% shape accuracy and no verified false positives.
Resumo:
We extend the Miles mechanism of wind-wave generation to finite depth. A beta-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of beta is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the beta-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrodinger equation is derived and the Akhmediev, Peregrine and Kuznetsov-Ma breather solutions for weak wind inputs in finite depth h are obtained.
Resumo:
Although highly weathered soils cover considerable areas in tropical regions, little is known about exploration by roots in deep soil layers. Intensively managed Eucalyptus plantations are simple forest ecosystems that can provide an insight into the belowground growth strategy of fast-growing tropical trees. Fast exploration of deep soil layers by eucalypt fine roots may contribute to achieving a gross primary production that is among the highest in the world for forests. Soil exploration by fine roots down to a depth of 10 m was studied throughout the complete cycle in Eucalyptus grandis plantations managed in short rotation. Intersects of fine roots, less than 1 mm in diameter, and medium-sized roots, 1-3 mm in diameter, were counted on trench walls in a chronosequence of 1-, 2-, 3.5-, and 6-year-old plantations on a sandy soil, as well as in an adjacent 6-year-old stand growing in a clayey soil. Two soil profiles were studied down to a depth of 10 m in each stand (down to 6 m at ages 1 and 2 years) and 4 soil profiles down to 1.5-3.0 m deep. The root intersects were counted on 224 m(2) of trench walls in 15 pits. Monitoring the soil water content showed that, after clear cutting, almost all the available water stored down to a depth of 7 m was taken up by tree roots within 1.1 year of planting. The soil space was explored intensively by fine roots down to a depth of 3 m from 1 year after planting, with an increase in anisotropy in the upper layers throughout the rotation. About 60% of fine root intersects were found at a depth of more than 1 m, irrespective of stand age. The root distribution was isotropic in deep soil layers and kriged maps showed fine root clumping. A considerable volume of soil was explored by fine roots in eucalypt plantations on deep tropical soils, which might prevent water and nutrient losses by deep drainage after canopy closure and contribute to maximizing resource uses.