131 resultados para Core Binding Factor Alpha 3 Subunit
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study examined the expression of epidermal growth factor (EGF) cell-surface receptors, the response to exogenous ligand and the autocrine production of transforming growth factor a (TGF-a) in normal and carcinoma-derived human oral keratinocytes. One of eight malignant cell lines overexpressed EGF receptors, while the remainder expressed receptor numbers similar to normal cells. Exogenous EGF stimulated incorporation of tritiated thymidine in a dose-dependent manner. In keratinocytes expressing normal numbers of EGF receptors, the cellular response to exogenous EGF correlated positively with total EGF receptor number. SCC-derived keratinocytes produced more TGF-a than normal cells. There was no statistical correlation between the autocrine production of TGF-a, EGF cell-surface receptor expression and cellular response to exogenous EGF. While the growth-stimulatory effects of exogenous TGF-cl were inhibited by the addition of a neutralising antibody, the presence of this antibody in conditioned medium failed to produce a similar decrease in growth. The results indicate that overexpression of EGF receptors is not an invariable characteristic of human oral squamous carcinoma-derived cell lines. Further, the contribution of TGF-a to the growth of normal and carcinoma-derived human oral keratinocytes in vitro may be less significant than previously documented.
Resumo:
Experimental infection of animals with Histoplasma capsulatum caused a massive macrophage infiltration into the spleen and induced the production of tumor necrosis factor alpha (TNF-alpha) locally. The cytokine was also produced in vitro by peritoneal exudate macrophages exposed to a large inoculum of yeast cells. Depletion of the cytokine by injection of polyclonal sheep anti-TNF-alpha antibody was detrimental to sublethally infected mice. Fungous burdens in the spleens of TNF-alpha-depleted mice were higher than they were in the infected control mice at days 2, 7, and 9 after infection, and the antibody-treated animals succumbed to the infection. Histopathological study of spleen sections revealed that splenic macrophages were not able to control proliferation of intracellular yeasts as a result of TNF-alpha depletion. It seems that TNF-alpha plays a role in early activation of splenic macrophages which is important in controlling the outcome of an infection.
Resumo:
The polysaccharide fraction of Paracoccidioides brasiliensis mycelial cell wall (F1 fraction), the active component of which is composed of beta-glucan, was investigated in regard to the activation of human monocytes for fungal killing. The cells were primed with interferon-gamma (IFN-gamma) or F1 (100 and 200 mug ml(-1)) or F1 (100 and 200 mug ml(-1)) plus IFN-gamma for 24 h and then evaluated for H2O2 release. In other experiments, the cells were pretreated with the same stimuli, challenged with a virulent strain of P. brasiliensis and evaluated for fungicidal activity and levels of tumor necrosis factor (TNF-alpha) in the supernatants. F1 increased the levels of H2O2 in a similar manner to IFN-gamma. However, a synergistic effect between these two activators was not detected. on the contrary, a significant fungicidal activity was only obtained after priming with IFN-gamma plus F1. This higher activity was associated with high levels of TNF-alpha in the supernatants of the cocultures. Overall, P. brasiliensis F1 fraction induced human monocytes to release relatively high levels of TNF-alpha, which, in combination with IFN-gamma, is responsible for the activation of human monocytes for effective killing of P. brasiliensis.
Resumo:
After filling root canals, the healing process depends on the chemical composition or physical-chemical properties of the material used, among other factors. All root canal sealers, whether solid or plastic, are foreign matter for the body if they remain in permanent contact with apical and periapical tissues. As a result, the first organic reaction that occurs is an attempt to phagocytize the material. During phagocytosis, macrophages release a large number of cell mediators into the area, among which are cytokines that are essential in intercellular communication and in many physiological and pathophysiological processes. One of these cytokines is tumor necrosis factor-alfa (TNF-α), which acts through links to specific receptors on the cell membrane initiating a cascade of events leading to induction, activation, or inhibition of numerous cytokine-regulated genes in the cell nucleus. The release of TNF-α in a cell culture of mouse peritoneal macrophages incubated with three concentrations (25, 50, and 100 mg/ml) of two endodontic sealers was measured. The solutions containing the calcium hydroxide-based root canal sealer (Sealapex) released fewer units of TNF-α than solutions containing the zinc oxide and eugenol-based sealer (Endomethasone).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this study was to review the literature regarding the action of the cytokines interleukin 10 (IL-10) and tumor necrosis factor-alpha (TNF-α) in pregnancy and to emphasize the factors that are of interest to clinical obstetrics. The literature highlights several actions of IL-10 and TNF-α during pregnancy. The actions of these cytokines seem to be antagonistic and dependent on the balance between them, which is orchestrated by the specific immunosuppressive action of IL-10. TNF-α has a characteristic inflammatory action, and it is an additional diabetogenic factor in pregnancy. The loss of the control of the production of these cytokines, with increase of TNF-α, is related to the risk for developing obstetric complications, particularly recurrent fetal loss, gestational diabetes mellitus, hypertensive syndromes, and fetal growth restriction. However, study results are controversial and are not clearly defined. These issues are attributed to the heterogeneity of the studies, particularly regarding their sample sizes and sources, the evaluation methods, and the multiplicity of factors and conditions that influence cytokine production. These questions are fundamental and should be addressed in future investigations to obtain more consistent results that can be applied to obstetric practice.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The eukaryotic translation initiation factor 2 (eIF2) binds the methionyl-initiator tRNA in a GTP-dependent mode. This complex associates with the 40 S ribosomal particle, which then, with the aid of other factors, binds to the 5' end of the mRNA and migrates to the first AUG codon, where eIF5 promotes GTP hydrolysis, followed by the formation of the 80 S ribosome. Here we provide a comparative sequence analysis of the β subunit of eIF2 and its archaeal counterpart (aIF2β). aIF2β differs from eIF2β in not possessing an N-terminal extension implicated in binding RNA, eIF5 and eIF2B. The remaining sequences are highly conserved, and are shared with eIF5. Previously isolated mutations in the yeast eIF2β, which allow initiation of translation at UUG codons due to the uncovering of an intrinsic GTPase activity in eIF2, involve residues that are conserved in aIF2β, but not in eIF5. We show that the sequence of eIF2B homologous to aIF2β is sufficient for binding eIF2γ, the only subunit with which it interacts, and comprises, at the most, 78 residues, eIF5 does not interact with eIF2γ, despite its similarity with eIF2β, probably because of a gap in homology in this region. These observations have implications for the evolution of the mechanism of translation initiation.
Resumo:
In this study, the effect of Yersinia derivatives on nitric oxide (NO), hydrogen peroxide (H2O2) and tumor necrosis factor-alpha (TNF-alpha) production by murine peritoneal macrophages was investigated. Addition of lipopolysaccharide (LPS) to the macrophage culture resulted in NO production that was dose dependent. on the other hand, bacterial cellular extract (CE) and Yersinia outer proteins (Yops) had no effect on NO production. The possible inhibitory effect of Yops on macrophage cultures stimulated with LPS was investigated. Yops partially inhibited NO production (67.4%) when compared with aminoguanidine. The effects of Yersinia derivatives on H2O2 production by macrophages were similar to those on NO production. LPS was the only derivative that stimulated H2O2 release in a dose-dependent manner. All Yersinia derivatives provoked the production of TNF-alpha, but LPS had the strongest effect, as observed for NO production. CE and Yops stimulated TNF-alpha production to a lesser extent than LPS. The results indicate the possibility that in vivo Yops may aid the evasion of the bacteria from the host defense mechanism by impairing the secretion of NO by macrophages. (C) 2003 Elsevier SAS. All rights reserved.